Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2001.10818
Cited By
Convergence Guarantees for Gaussian Process Means With Misspecified Likelihoods and Smoothness
29 January 2020
George Wynne
F. Briol
Mark Girolami
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Convergence Guarantees for Gaussian Process Means With Misspecified Likelihoods and Smoothness"
10 / 10 papers shown
Title
Data-Efficient Kernel Methods for Learning Differential Equations and Their Solution Operators: Algorithms and Error Analysis
Yasamin Jalalian
Juan Felipe Osorio Ramirez
Alexander W. Hsu
Bamdad Hosseini
H. Owhadi
48
0
0
02 Mar 2025
Robust and Conjugate Gaussian Process Regression
Matias Altamirano
F. Briol
Jeremias Knoblauch
28
10
0
01 Nov 2023
Introduction To Gaussian Process Regression In Bayesian Inverse Problems, With New ResultsOn Experimental Design For Weighted Error Measures
T. Helin
Andrew M. Stuart
A. Teckentrup
K. Zygalakis
34
4
0
09 Feb 2023
Bandit Convex Optimisation Revisited: FTRL Achieves
O
~
(
t
1
/
2
)
\tilde{O}(t^{1/2})
O
~
(
t
1/2
)
Regret
David Young
D. Leith
Georgios Iosifidis
23
0
0
01 Feb 2023
Optimally-Weighted Estimators of the Maximum Mean Discrepancy for Likelihood-Free Inference
Ayush Bharti
Masha Naslidnyk
Oscar Key
Samuel Kaski
F. Briol
42
12
0
27 Jan 2023
Antenna Array Calibration Via Gaussian Process Models
Sergey S. Tambovskiy
Gábor Fodor
H. Tullberg
9
1
0
16 Jan 2023
Asymptotic Bounds for Smoothness Parameter Estimates in Gaussian Process Interpolation
Toni Karvonen
27
1
0
10 Mar 2022
Meta-Learning Hypothesis Spaces for Sequential Decision-making
Parnian Kassraie
Jonas Rothfuss
Andreas Krause
OffRL
38
6
0
01 Feb 2022
Misspecified Gaussian Process Bandit Optimization
Ilija Bogunovic
Andreas Krause
57
43
0
09 Nov 2021
Non-smooth Bayesian Optimization in Tuning Problems
Hengrui Luo
J. Demmel
Younghyun Cho
Xin Li
Yang Liu
25
13
0
15 Sep 2021
1