ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.07884
11
24

Curvature Regularized Surface Reconstruction from Point Cloud

22 January 2020
Yuchen He
S. Kang
Hao Liu
    3DPC
ArXivPDFHTML
Abstract

We propose a variational functional and fast algorithms to reconstruct implicit surface from point cloud data with a curvature constraint. The minimizing functional balances the distance function from the point cloud and the mean curvature term. Only the point location is used, without any local normal or curvature estimation at each point. With the added curvature constraint, the computation becomes particularly challenging. To enhance the computational efficiency, we solve the problem by a novel operator splitting scheme. It replaces the original high-order PDEs by a decoupled PDE system, which is solved by a semi-implicit method. We also discuss approach using an augmented Lagrangian method. The proposed method shows robustness against noise, and recovers concave features and sharp corners better compared to models without curvature constraint. Numerical experiments in two and three dimensional data sets, noisy and sparse data are presented to validate the model.

View on arXiv
Comments on this paper