ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.07798
78
5
v1v2v3v4 (latest)

Loss-annealed GAIL for sample efficient and stable Imitation Learning

21 January 2020
Rohit Jena
Changliu Liu
ArXiv (abs)PDFHTML
Abstract

Imitation learning is the problem of learning a policy from an expert policy without access to a reward signal. Often, the expert policy is only available in the form of expert demonstrations. Behavior cloning and GAIL are two popularly used methods for performing imitation learning in this setting. Behavior cloning converges in a few training iterations, but doesn't reach peak performance and suffers from compounding errors due to its supervised training framework and iid assumption. GAIL attempts to tackle this problem by accounting for the temporal dependencies between states while matching occupancy measures of the expert and the policy. Although GAIL has shown successes in a number of environments, it takes a lot of environment interactions. Given their complementary benefits, existing methods have mentioned trying or tried to combine the two methods, without much success. We look at some of the limitations of existing ideas that try to combine BC and GAIL, and present an algorithm that combines the best of both worlds to enable faster and stable training while not compromising on performance. Our algorithm is embarrassingly simple to implement and seamlessly integrates with different policy gradient algorithms. We demonstrate the effectiveness of the algorithm both in low dimensional control tasks in a limited data setting, and in high dimensional grid world environments.

View on arXiv
Comments on this paper