ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.07614
  4. Cited By
Simple and Effective Graph Autoencoders with One-Hop Linear Models

Simple and Effective Graph Autoencoders with One-Hop Linear Models

21 January 2020
Guillaume Salha-Galvan
Romain Hennequin
Michalis Vazirgiannis
    GNN
ArXivPDFHTML

Papers citing "Simple and Effective Graph Autoencoders with One-Hop Linear Models"

5 / 5 papers shown
Title
A Comprehensive Survey on Graph Summarization with Graph Neural Networks
A Comprehensive Survey on Graph Summarization with Graph Neural Networks
Nasrin Shabani
Jia Wu
Amin Beheshti
Quan.Z Sheng
Jin Foo
Venus Haghighi
Ambreen Hanif
Maryam Shahabikargar
GNN
AI4TS
40
12
0
13 Feb 2023
Relating graph auto-encoders to linear models
Relating graph auto-encoders to linear models
Solveig Klepper
U. V. Luxburg
25
1
0
03 Nov 2022
Logiformer: A Two-Branch Graph Transformer Network for Interpretable
  Logical Reasoning
Logiformer: A Two-Branch Graph Transformer Network for Interpretable Logical Reasoning
Fangzhi Xu
Jun Liu
Qika Lin
Yudai Pan
Lingling Zhang
26
24
0
02 May 2022
FastGAE: Scalable Graph Autoencoders with Stochastic Subgraph Decoding
FastGAE: Scalable Graph Autoencoders with Stochastic Subgraph Decoding
Guillaume Salha-Galvan
Romain Hennequin
Jean-Baptiste Remy
Manuel Moussallam
Michalis Vazirgiannis
GNN
BDL
26
6
0
05 Feb 2020
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
224
1,340
0
12 Feb 2018
1