ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.07119
  4. Cited By
An interpretable neural network model through piecewise linear
  approximation

An interpretable neural network model through piecewise linear approximation

20 January 2020
Mengzhuo Guo
Qingpeng Zhang
Xiuwu Liao
D. Zeng
    MILM
    FAtt
ArXivPDFHTML

Papers citing "An interpretable neural network model through piecewise linear approximation"

3 / 3 papers shown
Title
TorchEsegeta: Framework for Interpretability and Explainability of
  Image-based Deep Learning Models
TorchEsegeta: Framework for Interpretability and Explainability of Image-based Deep Learning Models
S. Chatterjee
Arnab Das
Chirag Mandal
Budhaditya Mukhopadhyay
Manish Vipinraj
Aniruddh Shukla
R. Rao
Chompunuch Sarasaen
Oliver Speck
A. Nürnberger
MedIm
34
14
0
16 Oct 2021
Unbox the Blackbox: Predict and Interpret YouTube Viewership Using Deep
  Learning
Unbox the Blackbox: Predict and Interpret YouTube Viewership Using Deep Learning
Jiaheng Xie
Xinyu Liu
HAI
13
10
0
21 Dec 2020
DeepFM: An End-to-End Wide & Deep Learning Framework for CTR Prediction
DeepFM: An End-to-End Wide & Deep Learning Framework for CTR Prediction
Huifeng Guo
Ruiming Tang
Yunming Ye
Zhenguo Li
Xiuqiang He
Zhenhua Dong
112
64
0
12 Apr 2018
1