ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.06372
  4. Cited By

BigEarthNet Dataset with A New Class-Nomenclature for Remote Sensing Image Understanding

17 January 2020
Gencer Sumbul
Jian Kang
Tristan Kreuziger
F. Marcelino
H. Costa
P. Benevides
M. Caetano
Begüm Demir
ArXivPDFHTML

Papers citing "BigEarthNet Dataset with A New Class-Nomenclature for Remote Sensing Image Understanding"

7 / 7 papers shown
Title
Efficient Self-Supervised Learning for Earth Observation via Dynamic Dataset Curation
Efficient Self-Supervised Learning for Earth Observation via Dynamic Dataset Curation
Thomas Kerdreux
A. Tuel
Quentin Febvre
A. Mouche
Bertrand Chapron
78
0
0
09 Apr 2025
On the Effects of Different Types of Label Noise in Multi-Label Remote
  Sensing Image Classification
On the Effects of Different Types of Label Noise in Multi-Label Remote Sensing Image Classification
Tom Burgert
Mahdyar Ravanbakhsh
Begüm Demir
NoLa
18
17
0
28 Jul 2022
Benchmarking and scaling of deep learning models for land cover image
  classification
Benchmarking and scaling of deep learning models for land cover image classification
Ioannis Papoutsis
N. Bountos
Angelos Zavras
Dimitrios Michail
Christos Tryfonopoulos
29
55
0
18 Nov 2021
Evaluating explainable artificial intelligence methods for multi-label
  deep learning classification tasks in remote sensing
Evaluating explainable artificial intelligence methods for multi-label deep learning classification tasks in remote sensing
Ioannis Kakogeorgiou
Konstantinos Karantzalos
XAI
28
118
0
03 Apr 2021
A Comparative Study of Deep Learning Loss Functions for Multi-Label
  Remote Sensing Image Classification
A Comparative Study of Deep Learning Loss Functions for Multi-Label Remote Sensing Image Classification
Hichame Yessou
Gencer Sumbul
Begüm Demir
19
31
0
29 Sep 2020
The color out of space: learning self-supervised representations for
  Earth Observation imagery
The color out of space: learning self-supervised representations for Earth Observation imagery
Stefano Vincenzi
Angelo Porrello
Pietro Buzzega
Marco Cipriano
Pietro Fronte
Roberto Cuccu
C. Ippoliti
A. Conte
Simone Calderara
SSL
26
63
0
22 Jun 2020
Segmentation of Satellite Imagery using U-Net Models for Land Cover
  Classification
Segmentation of Satellite Imagery using U-Net Models for Land Cover Classification
Priit Ulmas
I. Liiv
32
79
0
05 Mar 2020
1