ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.06270
  4. Cited By
Bayesian inference of chaotic dynamics by merging data assimilation,
  machine learning and expectation-maximization

Bayesian inference of chaotic dynamics by merging data assimilation, machine learning and expectation-maximization

17 January 2020
Marc Bocquet
J. Brajard
A. Carrassi
Laurent Bertino
ArXivPDFHTML

Papers citing "Bayesian inference of chaotic dynamics by merging data assimilation, machine learning and expectation-maximization"

14 / 14 papers shown
Title
Online model error correction with neural networks: application to the
  Integrated Forecasting System
Online model error correction with neural networks: application to the Integrated Forecasting System
A. Farchi
M. Chrust
Marc Bocquet
Massimo Bonavita
26
0
0
06 Mar 2024
Learning 4DVAR inversion directly from observations
Learning 4DVAR inversion directly from observations
Arthur Filoche
J. Brajard
A. Charantonis
Dominique Béréziat
29
2
0
17 Nov 2022
Ensemble forecasts in reproducing kernel Hilbert space family
Ensemble forecasts in reproducing kernel Hilbert space family
Benjamin Dufée
Berenger Hug
É. Mémin
G. Tissot
24
1
0
29 Jul 2022
STEADY: Simultaneous State Estimation and Dynamics Learning from
  Indirect Observations
STEADY: Simultaneous State Estimation and Dynamics Learning from Indirect Observations
Jiayi Wei
Jarrett Holtz
Işıl Dillig
Joydeep Biswas
37
4
0
02 Mar 2022
A Systematic Exploration of Reservoir Computing for Forecasting Complex
  Spatiotemporal Dynamics
A Systematic Exploration of Reservoir Computing for Forecasting Complex Spatiotemporal Dynamics
Jason A. Platt
S. Penny
T. A. Smith
Tse-Chun Chen
H. Abarbanel
AI4TS
43
33
0
21 Jan 2022
Integrating Recurrent Neural Networks with Data Assimilation for
  Scalable Data-Driven State Estimation
Integrating Recurrent Neural Networks with Data Assimilation for Scalable Data-Driven State Estimation
S. Penny
T. A. Smith
Tse-Chun Chen
Jason A. Platt
Hsin-Yi Lin
M. Goodliff
H. Abarbanel
AI4CE
22
42
0
25 Sep 2021
Combining machine learning and data assimilation to forecast dynamical
  systems from noisy partial observations
Combining machine learning and data assimilation to forecast dynamical systems from noisy partial observations
Georg Gottwald
Sebastian Reich
AI4CE
46
37
0
08 Aug 2021
State, global and local parameter estimation using local ensemble Kalman
  filters: applications to online machine learning of chaotic dynamics
State, global and local parameter estimation using local ensemble Kalman filters: applications to online machine learning of chaotic dynamics
Quentin Malartic
A. Farchi
Marc Bocquet
39
19
0
23 Jul 2021
A comparison of combined data assimilation and machine learning methods
  for offline and online model error correction
A comparison of combined data assimilation and machine learning methods for offline and online model error correction
A. Farchi
Marc Bocquet
P. Laloyaux
Massimo Bonavita
Quentin Malartic
OffRL
31
35
0
23 Jul 2021
Machine learning-based conditional mean filter: a generalization of the
  ensemble Kalman filter for nonlinear data assimilation
Machine learning-based conditional mean filter: a generalization of the ensemble Kalman filter for nonlinear data assimilation
Truong-Vinh Hoang
S. Krumscheid
H. Matthies
Raúl Tempone
26
7
0
15 Jun 2021
Using machine learning to correct model error in data assimilation and
  forecast applications
Using machine learning to correct model error in data assimilation and forecast applications
A. Farchi
P. Laloyaux
Massimo Bonavita
Marc Bocquet
AI4CE
28
101
0
23 Oct 2020
Combining data assimilation and machine learning to infer unresolved
  scale parametrisation
Combining data assimilation and machine learning to infer unresolved scale parametrisation
J. Brajard
A. Carrassi
Marc Bocquet
Laurent Bertino
12
112
0
09 Sep 2020
Learning Variational Data Assimilation Models and Solvers
Learning Variational Data Assimilation Models and Solvers
Ronan Fablet
Bertrand Chapron
Lucas Drumetz
É. Mémin
O. Pannekoucke
F. Rousseau
19
67
0
25 Jul 2020
Online learning of both state and dynamics using ensemble Kalman filters
Online learning of both state and dynamics using ensemble Kalman filters
Marc Bocquet
A. Farchi
Quentin Malartic
12
27
0
06 Jun 2020
1