104
36

CIAO^\star: MPC-based Safe Motion Planning in Predictable Dynamic Environments

Abstract

Robots have been operating in dynamic environments and shared workspaces for decades. Most optimization based motion planning methods, however, do not consider the movement of other agents, e.g. humans or other robots, and therefore do not guarantee collision avoidance in such scenarios. This paper builds upon the Convex Inner ApprOximation (CIAO) method and proposes a motion planning algorithm that guarantees collision avoidance in predictable dynamic environments. Furthermore, it generalizes CIAO's free region concept to arbitrary norms and proposes a cost function to approximate time optimal motion planning. The proposed method, CIAO^\star, finds kinodynamically feasible and collision free trajectories for constrained single body robots using model predictive control (MPC). It optimizes the motion of one agent and accounts for the predicted movement of surrounding agents and obstacles. The experimental evaluation shows that CIAO^\star reaches close to time optimal behavior.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.