ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.05005
  4. Cited By
Total Deep Variation for Linear Inverse Problems

Total Deep Variation for Linear Inverse Problems

14 January 2020
Erich Kobler
Alexander Effland
K. Kunisch
Thomas Pock
ArXivPDFHTML

Papers citing "Total Deep Variation for Linear Inverse Problems"

23 / 23 papers shown
Title
Good Things Come in Pairs: Paired Autoencoders for Inverse Problems
Good Things Come in Pairs: Paired Autoencoders for Inverse Problems
Matthias Chung
Bas Peters
Michael Solomon
34
0
0
10 May 2025
Diffusion at Absolute Zero: Langevin Sampling Using Successive Moreau Envelopes [conference paper]
Diffusion at Absolute Zero: Langevin Sampling Using Successive Moreau Envelopes [conference paper]
Andreas Habring
Alexander Falk
Thomas Pock
60
0
0
03 Feb 2025
Stability of Data-Dependent Ridge-Regularization for Inverse Problems
Stability of Data-Dependent Ridge-Regularization for Inverse Problems
Sebastian Neumayer
Fabian Altekrüger
42
1
0
18 Jun 2024
Unsupervised Training of Convex Regularizers using Maximum Likelihood Estimation
Unsupervised Training of Convex Regularizers using Maximum Likelihood Estimation
Hongwei Tan
Ziruo Cai
Marcelo Pereyra
Subhadip Mukherjee
Junqi Tang
Carola-Bibiane Schönlieb
SSL
73
1
0
08 Apr 2024
What's in a Prior? Learned Proximal Networks for Inverse Problems
What's in a Prior? Learned Proximal Networks for Inverse Problems
Zhenghan Fang
Sam Buchanan
Jeremias Sulam
31
11
0
22 Oct 2023
Neural Gradient Regularizer
Neural Gradient Regularizer
Shuang Xu
Yifan Wang
Zixiang Zhao
Jiangjun Peng
Xiangyong Cao
Deyu Meng
Yulun Zhang
Radu Timofte
Luc Van Gool
26
0
0
31 Aug 2023
Learning Weakly Convex Regularizers for Convergent Image-Reconstruction
  Algorithms
Learning Weakly Convex Regularizers for Convergent Image-Reconstruction Algorithms
Alexis Goujon
Sebastian Neumayer
M. Unser
41
23
0
21 Aug 2023
Deep unfolding as iterative regularization for imaging inverse problems
Deep unfolding as iterative regularization for imaging inverse problems
Zhuoxu Cui
Qingyong Zhu
Jing Cheng
Dong Liang
34
5
0
24 Nov 2022
A Neural-Network-Based Convex Regularizer for Inverse Problems
A Neural-Network-Based Convex Regularizer for Inverse Problems
Alexis Goujon
Sebastian Neumayer
Pakshal Bohra
Stanislas Ducotterd
M. Unser
19
26
0
22 Nov 2022
Stable Deep MRI Reconstruction using Generative Priors
Stable Deep MRI Reconstruction using Generative Priors
Martin Zach
Florian Knoll
Thomas Pock
OOD
MedIm
DiffM
31
17
0
25 Oct 2022
Explainable bilevel optimization: an application to the Helsinki deblur
  challenge
Explainable bilevel optimization: an application to the Helsinki deblur challenge
S. Bonettini
Giorgia Franchini
Danilo Pezzi
M. Prato
19
10
0
18 Oct 2022
Learning Variational Models with Unrolling and Bilevel Optimization
Learning Variational Models with Unrolling and Bilevel Optimization
Christoph Brauer
Niklas Breustedt
T. Wolff
D. Lorenz
SSL
34
3
0
26 Sep 2022
Fixed-Point Automatic Differentiation of Forward--Backward Splitting
  Algorithms for Partly Smooth Functions
Fixed-Point Automatic Differentiation of Forward--Backward Splitting Algorithms for Partly Smooth Functions
Sheheryar Mehmood
Peter Ochs
33
3
0
05 Aug 2022
Multimodal learning-based inversion models for the space-time
  reconstruction of satellite-derived geophysical fields
Multimodal learning-based inversion models for the space-time reconstruction of satellite-derived geophysical fields
Ronan Fablet
Bertrand Chapron
18
4
0
20 Mar 2022
WPPNets and WPPFlows: The Power of Wasserstein Patch Priors for
  Superresolution
WPPNets and WPPFlows: The Power of Wasserstein Patch Priors for Superresolution
Fabian Altekrüger
J. Hertrich
27
15
0
20 Jan 2022
Supervised learning of analysis-sparsity priors with automatic
  differentiation
Supervised learning of analysis-sparsity priors with automatic differentiation
Hashem Ghanem
Joseph Salmon
Nicolas Keriven
Samuel Vaiter
38
2
0
15 Dec 2021
Generalized Normalizing Flows via Markov Chains
Generalized Normalizing Flows via Markov Chains
Paul Hagemann
J. Hertrich
Gabriele Steidl
BDL
DiffM
AI4CE
30
22
0
24 Nov 2021
Designing Rotationally Invariant Neural Networks from PDEs and
  Variational Methods
Designing Rotationally Invariant Neural Networks from PDEs and Variational Methods
Tobias Alt
Karl Schrader
Joachim Weickert
Pascal Peter
M. Augustin
22
4
0
31 Aug 2021
Learning the optimal Tikhonov regularizer for inverse problems
Learning the optimal Tikhonov regularizer for inverse problems
Giovanni S. Alberti
E. De Vito
Matti Lassas
Luca Ratti
Matteo Santacesaria
25
30
0
11 Jun 2021
Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie
Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie
R. Laumont
Valentin De Bortoli
Andrés Almansa
J. Delon
Alain Durmus
Marcelo Pereyra
24
109
0
08 Mar 2021
Bayesian Uncertainty Estimation of Learned Variational MRI
  Reconstruction
Bayesian Uncertainty Estimation of Learned Variational MRI Reconstruction
Dominik Narnhofer
Alexander Effland
Erich Kobler
Kerstin Hammernik
Florian Knoll
Thomas Pock
UQCV
BDL
23
49
0
12 Feb 2021
Learnable Descent Algorithm for Nonsmooth Nonconvex Image Reconstruction
Learnable Descent Algorithm for Nonsmooth Nonconvex Image Reconstruction
Yunmei Chen
Hongcheng Liu
X. Ye
Qingchao Zhang
56
23
0
22 Jul 2020
Total Deep Variation: A Stable Regularizer for Inverse Problems
Total Deep Variation: A Stable Regularizer for Inverse Problems
Erich Kobler
Alexander Effland
K. Kunisch
Thomas Pock
MedIm
27
19
0
15 Jun 2020
1