Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2001.04567
Cited By
A deep-learning based Bayesian approach to seismic imaging and uncertainty quantification
13 January 2020
Ali Siahkoohi
G. Rizzuti
Felix J. Herrmann
UQCV
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A deep-learning based Bayesian approach to seismic imaging and uncertainty quantification"
7 / 7 papers shown
Title
Learned multiphysics inversion with differentiable programming and machine learning
M. Louboutin
Ziyi Yin
Rafael Orozco
Thomas J. Grady
Ali Siahkoohi
G. Rizzuti
Philipp A. Witte
O. Møyner
Gerard Gorman
Felix J. Herrmann
AI4CE
26
10
0
12 Apr 2023
Uncertainty Quantification for Deep Unrolling-Based Computational Imaging
Canberk Ekmekci
Müjdat Çetin
UQCV
19
11
0
02 Jul 2022
Deep Bayesian inference for seismic imaging with tasks
Ali Siahkoohi
G. Rizzuti
Felix J. Herrmann
BDL
UQCV
30
21
0
10 Oct 2021
Learning by example: fast reliability-aware seismic imaging with normalizing flows
Ali Siahkoohi
Felix J. Herrmann
OOD
27
13
0
13 Apr 2021
Faster Uncertainty Quantification for Inverse Problems with Conditional Normalizing Flows
Ali Siahkoohi
G. Rizzuti
Philipp A. Witte
Felix J. Herrmann
AI4CE
16
16
0
15 Jul 2020
Uncertainty quantification in imaging and automatic horizon tracking: a Bayesian deep-prior based approach
Ali Siahkoohi
G. Rizzuti
Felix J. Herrmann
25
20
0
01 Apr 2020
Stochastic seismic waveform inversion using generative adversarial networks as a geological prior
L. Mosser
O. Dubrule
M. Blunt
GAN
AI4CE
89
206
0
10 Jun 2018
1