Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2001.04385
Cited By
Universal Differential Equations for Scientific Machine Learning
13 January 2020
Christopher Rackauckas
Yingbo Ma
Julius Martensen
Collin Warner
K. Zubov
R. Supekar
Dominic J. Skinner
Ali Ramadhan
Alan Edelman
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Universal Differential Equations for Scientific Machine Learning"
50 / 91 papers shown
Title
Efficient Training of Physics-enhanced Neural ODEs via Direct Collocation and Nonlinear Programming
Linus Langenkamp
Philip Hannebohm
Bernhard Bachmann
36
0
0
06 May 2025
Reliable and Efficient Inverse Analysis using Physics-Informed Neural Networks with Distance Functions and Adaptive Weight Tuning
Shota Deguchi
Mitsuteru Asai
PINN
AI4CE
81
0
0
25 Apr 2025
Modelling Mean-Field Games with Neural Ordinary Differential Equations
Anna C. M. Thöni
Yoram Bachrach
Tal Kachman
38
0
0
17 Apr 2025
Optimal Virtual Model Control for Robotics: Design and Tuning of Passivity-Based Controllers
Daniel Larby
F. Forni
62
1
0
20 Jan 2025
Understanding and Mitigating Membership Inference Risks of Neural Ordinary Differential Equations
Sanghyun Hong
Fan Wu
A. Gruber
Kookjin Lee
42
0
0
12 Jan 2025
Neural Port-Hamiltonian Differential Algebraic Equations for Compositional Learning of Electrical Networks
Cyrus Neary
Nathan Tsao
Ufuk Topcu
77
1
0
15 Dec 2024
When are dynamical systems learned from time series data statistically accurate?
Jeongjin Park
Nicole Yang
Nisha Chandramoorthy
AI4TS
36
4
0
09 Nov 2024
Efficient, Accurate and Stable Gradients for Neural ODEs
Sam McCallum
James Foster
37
4
0
15 Oct 2024
Structural Constraints for Physics-augmented Learning
Simon Kuang
Xinfan Lin
PINN
28
0
0
07 Oct 2024
Learning Physics From Video: Unsupervised Physical Parameter Estimation for Continuous Dynamical Systems
Alejandro Castañeda Garcia
Jan van Gemert
Daan Brinks
Nergis Tömen
38
0
0
02 Oct 2024
Numerically Robust Fixed-Point Smoothing Without State Augmentation
Nicholas Krämer
39
2
0
30 Sep 2024
Differentiable programming across the PDE and Machine Learning barrier
N. Bouziani
David A. Ham
Ado Farsi
PINN
AI4CE
37
1
0
09 Sep 2024
SysCaps: Language Interfaces for Simulation Surrogates of Complex Systems
Patrick Emami
Zhaonan Li
Saumya Sinha
Truc Nguyen
56
1
0
30 May 2024
Interventionally Consistent Surrogates for Agent-based Simulators
Joel Dyer
Nicholas Bishop
Yorgos Felekis
Fabio Massimo Zennaro
Anisoara Calinescu
Theodoros Damoulas
Michael Wooldridge
19
6
0
18 Dec 2023
Enhancing Low-Order Discontinuous Galerkin Methods with Neural Ordinary Differential Equations for Compressible Navier--Stokes Equations
Shinhoo Kang
Emil M. Constantinescu
AI4CE
22
0
0
29 Oct 2023
Learning Hybrid Dynamics Models With Simulator-Informed Latent States
K. Ensinger
Sebastian Ziesche
Sebastian Trimpe
34
1
0
06 Sep 2023
Faster Training of Neural ODEs Using Gauß-Legendre Quadrature
Alexander Norcliffe
M. Deisenroth
23
3
0
21 Aug 2023
Branched Latent Neural Maps
M. Salvador
Alison Lesley Marsden
38
4
0
04 Aug 2023
Automatic Differentiation for Inverse Problems with Applications in Quantum Transport
I. Williams
E. Polizzi
18
1
0
18 Jul 2023
Trainability, Expressivity and Interpretability in Gated Neural ODEs
T. Kim
T. Can
K. Krishnamurthy
AI4CE
35
4
0
12 Jul 2023
Neural Astrophysical Wind Models
Dustin D. Nguyen
16
2
0
20 Jun 2023
An analysis of Universal Differential Equations for data-driven discovery of Ordinary Differential Equations
Mattia Silvestri
Federico Baldo
Eleonora Misino
M. Lombardi
AI4CE
16
1
0
17 Jun 2023
Learning Dynamical Systems from Noisy Data with Inverse-Explicit Integrators
Haakon Noren
Sølve Eidnes
E. Celledoni
21
3
0
06 Jun 2023
A Practitioner's Guide to Bayesian Inference in Pharmacometrics using Pumas
Mohamed Tarek
J. Storópoli
Casey B. Davis
C. Elrod
Julius Krumbiegel
Chris Rackauckas
V. Ivaturi
GP
23
3
0
31 Mar 2023
Locally Regularized Neural Differential Equations: Some Black Boxes Were Meant to Remain Closed!
Avik Pal
Alan Edelman
Chris Rackauckas
24
3
0
03 Mar 2023
Differentiable modeling to unify machine learning and physical models and advance Geosciences
Chaopeng Shen
A. Appling
Pierre Gentine
Toshiyuki Bandai
H. Gupta
...
Chris Rackauckas
Tirthankar Roy
Chonggang Xu
Binayak Mohanty
K. Lawson
AI4CE
42
14
0
10 Jan 2023
Physics-Informed Kernel Embeddings: Integrating Prior System Knowledge with Data-Driven Control
Adam J. Thorpe
Cyrus Neary
Franck Djeumou
Meeko Oishi
Ufuk Topcu
35
7
0
09 Jan 2023
Compositional Learning of Dynamical System Models Using Port-Hamiltonian Neural Networks
Cyrus Neary
Ufuk Topcu
PINN
AI4CE
20
12
0
01 Dec 2022
Neural DAEs: Constrained neural networks
Tue Boesen
E. Haber
Uri M. Ascher
39
3
0
25 Nov 2022
The Past Does Matter: Correlation of Subsequent States in Trajectory Predictions of Gaussian Process Models
Steffen Ridderbusch
Sina Ober-Blobaum
Paul Goulart
24
2
0
20 Nov 2022
Neural ODEs as Feedback Policies for Nonlinear Optimal Control
I. O. Sandoval
Panagiotis Petsagkourakis
Ehecatl Antonio del Rio Chanona
25
9
0
20 Oct 2022
Homotopy-based training of NeuralODEs for accurate dynamics discovery
Joon-Hyuk Ko
Hankyul Koh
Nojun Park
W. Jhe
46
8
0
04 Oct 2022
A Robust Learning Methodology for Uncertainty-aware Scientific Machine Learning models
Erbet Costa Almeida
C. Rebello
M. Fontana
L. Schnitman
Idelfonso B. R. Nogueira
19
9
0
05 Sep 2022
Differentiable Programming for Earth System Modeling
Maximilian Gelbrecht
Alistair J R White
S. Bathiany
Niklas Boers
21
16
0
29 Aug 2022
NeuralUQ: A comprehensive library for uncertainty quantification in neural differential equations and operators
Zongren Zou
Xuhui Meng
Apostolos F. Psaros
George Karniadakis
AI4CE
32
36
0
25 Aug 2022
Interpretable Polynomial Neural Ordinary Differential Equations
Colby Fronk
Linda R. Petzold
27
27
0
09 Aug 2022
Physics-informed Machine Learning of Parameterized Fundamental Diagrams
J.R.L. Koch
Thomas Maxner
Vinay C. Amatya
A. Ranjbari
Chase P. Dowling
AI4CE
PINN
11
2
0
01 Aug 2022
Human Trajectory Prediction via Neural Social Physics
Jiangbei Yue
Tianyi Zhou
He Wang
AI4CE
26
101
0
21 Jul 2022
Structural Inference of Networked Dynamical Systems with Universal Differential Equations
James Koch
Zhao Chen
Aaron Tuor
Ján Drgoňa
D. Vrabie
PINN
28
10
0
11 Jul 2022
Automatic differentiation and the optimization of differential equation models in biology
S. Frank
22
6
0
10 Jul 2022
j-Wave: An open-source differentiable wave simulator
A. Stanziola
Simon Arridge
B. Cox
B. Treeby
VLM
41
21
0
30 Jun 2022
E2V-SDE: From Asynchronous Events to Fast and Continuous Video Reconstruction via Neural Stochastic Differential Equations
Jongwan Kim
Dongjin Lee
Byunggook Na
Seongsik Park
Jeonghee Jo
Sung-Hoon Yoon
31
0
0
15 Jun 2022
Automated differential equation solver based on the parametric approximation optimization
A. Hvatov
Tatiana Tikhonova
16
4
0
11 May 2022
Machines of finite depth: towards a formalization of neural networks
Pietro Vertechi
M. Bergomi
PINN
21
2
0
27 Apr 2022
Optimizing differential equations to fit data and predict outcomes
S. Frank
33
4
0
16 Apr 2022
Machine Learning and Deep Learning -- A review for Ecologists
Maximilian Pichler
F. Hartig
45
127
0
11 Apr 2022
Monarch: Expressive Structured Matrices for Efficient and Accurate Training
Tri Dao
Beidi Chen
N. Sohoni
Arjun D Desai
Michael Poli
Jessica Grogan
Alexander Liu
Aniruddh Rao
Atri Rudra
Christopher Ré
22
87
0
01 Apr 2022
Differentiable, learnable, regionalized process-based models with physical outputs can approach state-of-the-art hydrologic prediction accuracy
D. Feng
Jiangtao Liu
K. Lawson
Chaopeng Shen
BDL
AI4CE
18
117
0
28 Mar 2022
Neural Ordinary Differential Equations for Nonlinear System Identification
Aowabin Rahman
Ján Drgoňa
Aaron Tuor
J. Strube
25
22
0
28 Feb 2022
Input-to-State Stable Neural Ordinary Differential Equations with Applications to Transient Modeling of Circuits
Alan Yang
J. Xiong
Maxim Raginsky
E. Rosenbaum
AI4TS
24
4
0
14 Feb 2022
1
2
Next