ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.04341
  4. Cited By
Information Newton's flow: second-order optimization method in
  probability space

Information Newton's flow: second-order optimization method in probability space

13 January 2020
Yifei Wang
Wuchen Li
ArXivPDFHTML

Papers citing "Information Newton's flow: second-order optimization method in probability space"

5 / 5 papers shown
Title
Gradient Flows for Sampling: Mean-Field Models, Gaussian Approximations
  and Affine Invariance
Gradient Flows for Sampling: Mean-Field Models, Gaussian Approximations and Affine Invariance
Yifan Chen
Daniel Zhengyu Huang
Jiaoyang Huang
Sebastian Reich
Andrew M. Stuart
11
17
0
21 Feb 2023
Particle-based Variational Inference with Preconditioned Functional
  Gradient Flow
Particle-based Variational Inference with Preconditioned Functional Gradient Flow
Hanze Dong
Xi Wang
Yong Lin
Tong Zhang
22
19
0
25 Nov 2022
Scaling Up Bayesian Uncertainty Quantification for Inverse Problems
  using Deep Neural Networks
Scaling Up Bayesian Uncertainty Quantification for Inverse Problems using Deep Neural Networks
Shiwei Lan
Shuyi Li
B. Shahbaba
UQCV
BDL
22
16
0
11 Jan 2021
SVGD as a kernelized Wasserstein gradient flow of the chi-squared
  divergence
SVGD as a kernelized Wasserstein gradient flow of the chi-squared divergence
Sinho Chewi
Thibaut Le Gouic
Chen Lu
Tyler Maunu
Philippe Rigollet
31
66
0
03 Jun 2020
A Stein variational Newton method
A Stein variational Newton method
Gianluca Detommaso
Tiangang Cui
Alessio Spantini
Youssef Marzouk
Robert Scheichl
61
114
0
08 Jun 2018
1