ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.04263
  4. Cited By
Deep learning to discover and predict dynamics on an inertial manifold

Deep learning to discover and predict dynamics on an inertial manifold

20 December 2019
Alec J. Linot
M. Graham
    AI4CE
ArXivPDFHTML

Papers citing "Deep learning to discover and predict dynamics on an inertial manifold"

6 / 6 papers shown
Title
Learning to Decouple Complex Systems
Learning to Decouple Complex Systems
Zihan Zhou
Tianshu Yu
BDL
110
4
0
17 Feb 2025
Building symmetries into data-driven manifold dynamics models for complex flows: application to two-dimensional Kolmogorov flow
Building symmetries into data-driven manifold dynamics models for complex flows: application to two-dimensional Kolmogorov flow
Carlos E. Pérez De Jesús
Alec J. Linot
Michael D. Graham
AI4CE
62
2
0
15 Dec 2023
Discovering physical concepts with neural networks
Discovering physical concepts with neural networks
Raban Iten
Tony Metger
H. Wilming
L. D. Rio
R. Renner
PINN
AI4CE
51
387
0
26 Jul 2018
Data-Driven Forecasting of High-Dimensional Chaotic Systems with Long
  Short-Term Memory Networks
Data-Driven Forecasting of High-Dimensional Chaotic Systems with Long Short-Term Memory Networks
Pantelis R. Vlachas
Wonmin Byeon
Z. Y. Wan
T. Sapsis
Petros Koumoutsakos
AI4TS
36
471
0
21 Feb 2018
Deep learning for universal linear embeddings of nonlinear dynamics
Deep learning for universal linear embeddings of nonlinear dynamics
Bethany Lusch
J. Nathan Kutz
Steven L. Brunton
65
1,237
0
27 Dec 2017
Linearly-Recurrent Autoencoder Networks for Learning Dynamics
Linearly-Recurrent Autoencoder Networks for Learning Dynamics
Samuel E. Otto
C. Rowley
AI4CE
42
323
0
04 Dec 2017
1