ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.03772
  4. Cited By
Confidence Scores Make Instance-dependent Label-noise Learning Possible

Confidence Scores Make Instance-dependent Label-noise Learning Possible

11 January 2020
Antonin Berthon
Bo Han
Gang Niu
Tongliang Liu
Masashi Sugiyama
    NoLa
ArXivPDFHTML

Papers citing "Confidence Scores Make Instance-dependent Label-noise Learning Possible"

50 / 61 papers shown
Title
Enhanced Sample Selection with Confidence Tracking: Identifying Correctly Labeled yet Hard-to-Learn Samples in Noisy Data
Enhanced Sample Selection with Confidence Tracking: Identifying Correctly Labeled yet Hard-to-Learn Samples in Noisy Data
Weiran Pan
Wei Wei
Feida Zhu
Yong Deng
NoLa
159
0
0
24 Apr 2025
Segmentation with Noisy Labels via Spatially Correlated Distributions
Segmentation with Noisy Labels via Spatially Correlated Distributions
Ryu Tadokoro
Tsukasa Takagi
Shin-ichi Maeda
24
0
0
21 Apr 2025
Training Robust Graph Neural Networks by Modeling Noise Dependencies
Training Robust Graph Neural Networks by Modeling Noise Dependencies
Yeonjun In
Kanghoon Yoon
Sukwon Yun
Kibum Kim
Sungchul Kim
Chanyoung Park
OOD
NoLa
83
0
0
27 Feb 2025
Learning Causal Transition Matrix for Instance-dependent Label Noise
Learning Causal Transition Matrix for Instance-dependent Label Noise
Jiahui Li
Tai-wei Chang
Kun Kuang
Ximing Li
Long Chen
Zhiqiang Zhang
NoLa
CML
186
0
0
18 Dec 2024
Learning with Confidence: Training Better Classifiers from Soft Labels
Learning with Confidence: Training Better Classifiers from Soft Labels
Sjoerd de Vries
Dirk Thierens
16
1
0
24 Sep 2024
Learning with Instance-Dependent Noisy Labels by Anchor Hallucination
  and Hard Sample Label Correction
Learning with Instance-Dependent Noisy Labels by Anchor Hallucination and Hard Sample Label Correction
Po-Hsuan Huang
Chia-Ching Lin
Chih-Fan Hsu
Ming-Ching Chang
Wei-Chao Chen
NoLa
27
0
0
10 Jul 2024
NoisyAG-News: A Benchmark for Addressing Instance-Dependent Noise in
  Text Classification
NoisyAG-News: A Benchmark for Addressing Instance-Dependent Noise in Text Classification
Hongfei Huang
Tingting Liang
Xixi Sun
Zikang Jin
Yuyu Yin
NoLa
39
1
0
09 Jul 2024
Foster Adaptivity and Balance in Learning with Noisy Labels
Foster Adaptivity and Balance in Learning with Noisy Labels
Mengmeng Sheng
Zeren Sun
Tao Chen
Shuchao Pang
Yucheng Wang
Yazhou Yao
34
2
0
03 Jul 2024
Don't drop your samples! Coherence-aware training benefits Conditional diffusion
Don't drop your samples! Coherence-aware training benefits Conditional diffusion
Nicolas Dufour
Victor Besnier
Vicky Kalogeiton
David Picard
DiffM
59
2
0
30 May 2024
Can We Treat Noisy Labels as Accurate?
Can We Treat Noisy Labels as Accurate?
Yuxiang Zheng
Zhongyi Han
Yilong Yin
Xin Gao
Tongliang Liu
35
1
0
21 May 2024
Trusted Multi-view Learning with Label Noise
Trusted Multi-view Learning with Label Noise
Cai Xu
Yilin Zhang
Ziyu Guan
Wei Zhao
NoLa
EDL
47
4
0
18 Apr 2024
Cost-Sensitive Learning to Defer to Multiple Experts with Workload
  Constraints
Cost-Sensitive Learning to Defer to Multiple Experts with Workload Constraints
Jean V. Alves
Diogo Leitao
Sérgio Jesus
Marco O. P. Sampaio
Javier Liébana
Pedro Saleiro
Mário A. T. Figueiredo
P. Bizarro
43
5
0
11 Mar 2024
Dirichlet-based Per-Sample Weighting by Transition Matrix for Noisy
  Label Learning
Dirichlet-based Per-Sample Weighting by Transition Matrix for Noisy Label Learning
Heesun Bae
Seungjae Shin
Byeonghu Na
Il-Chul Moon
NoLa
38
3
0
05 Mar 2024
Mitigating Label Noise on Graph via Topological Sample Selection
Mitigating Label Noise on Graph via Topological Sample Selection
Yuhao Wu
Jiangchao Yao
Xiaobo Xia
Jun-chen Yu
Ruxing Wang
Bo Han
Tongliang Liu
NoLa
49
2
0
04 Mar 2024
Label-Noise Robust Diffusion Models
Label-Noise Robust Diffusion Models
Byeonghu Na
Yeongmin Kim
Heesun Bae
Jung Hyun Lee
Seho Kwon
Wanmo Kang
Il-Chul Moon
NoLa
DiffM
55
8
0
27 Feb 2024
FiFAR: A Fraud Detection Dataset for Learning to Defer
FiFAR: A Fraud Detection Dataset for Learning to Defer
Jean V. Alves
Diogo Leitao
Sérgio Jesus
Marco O. P. Sampaio
Pedro Saleiro
Mário A. T. Figueiredo
P. Bizarro
33
0
0
20 Dec 2023
VDC: Versatile Data Cleanser based on Visual-Linguistic Inconsistency by
  Multimodal Large Language Models
VDC: Versatile Data Cleanser based on Visual-Linguistic Inconsistency by Multimodal Large Language Models
Daniele De Sensi
Mingda Zhang
Salvatore Di Girolamo
Bing Wu
Torsten Hoefler
MLLM
30
3
0
28 Sep 2023
Unified Risk Analysis for Weakly Supervised Learning
Unified Risk Analysis for Weakly Supervised Learning
Chao-Kai Chiang
Masashi Sugiyama
25
3
0
15 Sep 2023
Generating the Ground Truth: Synthetic Data for Label Noise Research
Generating the Ground Truth: Synthetic Data for Label Noise Research
Sjoerd de Vries
Dirk Thierens
NoLa
19
1
0
08 Sep 2023
Leveraging an Alignment Set in Tackling Instance-Dependent Label Noise
Leveraging an Alignment Set in Tackling Instance-Dependent Label Noise
Donna Tjandra
Jenna Wiens
NoLa
25
3
0
10 Jul 2023
Binary Classification with Instance and Label Dependent Label Noise
Binary Classification with Instance and Label Dependent Label Noise
H. Im
Paul Grigas
NoLa
28
2
0
06 Jun 2023
Label-Retrieval-Augmented Diffusion Models for Learning from Noisy
  Labels
Label-Retrieval-Augmented Diffusion Models for Learning from Noisy Labels
Jian Chen
Ruiyi Zhang
Tong Yu
Rohan Sharma
Zhiqiang Xu
Tong Sun
Changyou Chen
DiffM
30
18
0
31 May 2023
DyGen: Learning from Noisy Labels via Dynamics-Enhanced Generative
  Modeling
DyGen: Learning from Noisy Labels via Dynamics-Enhanced Generative Modeling
Yuchen Zhuang
Yue Yu
Lingkai Kong
Xiang Chen
Chao Zhang
NoLa
SyDa
AI4CE
22
13
0
30 May 2023
Unsupervised Domain-agnostic Fake News Detection using Multi-modal Weak
  Signals
Unsupervised Domain-agnostic Fake News Detection using Multi-modal Weak Signals
Amila Silva
Ling Luo
S. Karunasekera
C. Leckie
17
5
0
18 May 2023
Rethinking the Value of Labels for Instance-Dependent Label Noise
  Learning
Rethinking the Value of Labels for Instance-Dependent Label Noise Learning
Hanwen Deng
Weijia Zhang
Min-Ling Zhang
NoLa
35
0
0
10 May 2023
Multi-annotator Deep Learning: A Probabilistic Framework for
  Classification
Multi-annotator Deep Learning: A Probabilistic Framework for Classification
M. Herde
Denis Huseljic
Bernhard Sick
28
9
0
05 Apr 2023
When Source-Free Domain Adaptation Meets Learning with Noisy Labels
When Source-Free Domain Adaptation Meets Learning with Noisy Labels
L. Yi
Gezheng Xu
Pengcheng Xu
Jiaqi Li
Ruizhi Pu
Charles Ling
A. McLeod
Boyu Wang
23
39
0
31 Jan 2023
Instance-specific Label Distribution Regularization for Learning with
  Label Noise
Instance-specific Label Distribution Regularization for Learning with Label Noise
Zehui Liao
Shishuai Hu
Yutong Xie
Yong-quan Xia
NoLa
24
3
0
16 Dec 2022
Label Noise-Robust Learning using a Confidence-Based Sieving Strategy
Label Noise-Robust Learning using a Confidence-Based Sieving Strategy
Reihaneh Torkzadehmahani
Reza Nasirigerdeh
Daniel Rueckert
Georgios Kaissis
NoLa
36
7
0
11 Oct 2022
Tackling Instance-Dependent Label Noise with Dynamic Distribution
  Calibration
Tackling Instance-Dependent Label Noise with Dynamic Distribution Calibration
Manyi Zhang
Yuxin Ren
Zihao Wang
C. Yuan
21
3
0
11 Oct 2022
Instance-Dependent Noisy Label Learning via Graphical Modelling
Instance-Dependent Noisy Label Learning via Graphical Modelling
Arpit Garg
Cuong C. Nguyen
Rafael Felix
Thanh-Toan Do
G. Carneiro
NoLa
34
27
0
02 Sep 2022
Disparate Censorship & Undertesting: A Source of Label Bias in Clinical
  Machine Learning
Disparate Censorship & Undertesting: A Source of Label Bias in Clinical Machine Learning
Trenton Chang
Michael Sjoding
Jenna Wiens
22
11
0
01 Aug 2022
ProSelfLC: Progressive Self Label Correction Towards A Low-Temperature
  Entropy State
ProSelfLC: Progressive Self Label Correction Towards A Low-Temperature Entropy State
Xinshao Wang
Yang Hua
Elyor Kodirov
S. Mukherjee
David A. Clifton
N. Robertson
19
6
0
30 Jun 2022
Instance-Dependent Label-Noise Learning with Manifold-Regularized
  Transition Matrix Estimation
Instance-Dependent Label-Noise Learning with Manifold-Regularized Transition Matrix Estimation
De-Chun Cheng
Tongliang Liu
Yixiong Ning
Nannan Wang
Bo Han
Gang Niu
Xinbo Gao
Masashi Sugiyama
NoLa
39
65
0
06 Jun 2022
From Noisy Prediction to True Label: Noisy Prediction Calibration via
  Generative Model
From Noisy Prediction to True Label: Noisy Prediction Calibration via Generative Model
Heesun Bae
Seung-Jae Shin
Byeonghu Na
Joonho Jang
Kyungwoo Song
Il-Chul Moon
NoLa
28
26
0
02 May 2022
Backdoor Defense via Decoupling the Training Process
Backdoor Defense via Decoupling the Training Process
Kunzhe Huang
Yiming Li
Baoyuan Wu
Zhan Qin
Kui Ren
AAML
FedML
27
185
0
05 Feb 2022
Identifiability of Label Noise Transition Matrix
Identifiability of Label Noise Transition Matrix
Yang Liu
Hao Cheng
Anton van den Hengel
NoLa
25
43
0
04 Feb 2022
Confidence May Cheat: Self-Training on Graph Neural Networks under
  Distribution Shift
Confidence May Cheat: Self-Training on Graph Neural Networks under Distribution Shift
Hongrui Liu
Binbin Hu
Xiao Wang
Chuan Shi
Qing Cui
Jun Zhou
92
54
0
27 Jan 2022
Learning with Proper Partial Labels
Learning with Proper Partial Labels
Zheng Wu
Jiaqi Lv
Masashi Sugiyama
24
8
0
23 Dec 2021
Two Wrongs Don't Make a Right: Combating Confirmation Bias in Learning
  with Label Noise
Two Wrongs Don't Make a Right: Combating Confirmation Bias in Learning with Label Noise
Mingcai Chen
Hao Cheng
Yuntao Du
Ming Xu
Wenyu Jiang
Chongjun Wang
NoLa
19
25
0
06 Dec 2021
Learning with Noisy Labels by Efficient Transition Matrix Estimation to
  Combat Label Miscorrection
Learning with Noisy Labels by Efficient Transition Matrix Estimation to Combat Label Miscorrection
Seong Min Kye
Kwanghee Choi
Joonyoung Yi
Buru Chang
NoLa
33
15
0
29 Nov 2021
Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern
  Estimation
Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation
Jeongeun Park
Seungyoung Shin
Sangheum Hwang
Sungjoon Choi
15
5
0
02 Nov 2021
Deep Classifiers with Label Noise Modeling and Distance Awareness
Deep Classifiers with Label Noise Modeling and Distance Awareness
Vincent Fortuin
Mark Collier
F. Wenzel
J. Allingham
J. Liu
Dustin Tran
Balaji Lakshminarayanan
Jesse Berent
Rodolphe Jenatton
E. Kokiopoulou
UQCV
34
11
0
06 Oct 2021
Instance-dependent Label-noise Learning under a Structural Causal Model
Instance-dependent Label-noise Learning under a Structural Causal Model
Yu Yao
Tongliang Liu
Biwei Huang
Bo Han
Gang Niu
Anton van den Hengel
CML
NoLa
17
68
0
07 Sep 2021
An Instance-Dependent Simulation Framework for Learning with Label Noise
An Instance-Dependent Simulation Framework for Learning with Label Noise
Keren Gu
Xander Masotto
Vandana Bachani
Balaji Lakshminarayanan
Jack Nikodem
Dong Yin
NoLa
11
24
0
23 Jul 2021
To Smooth or Not? When Label Smoothing Meets Noisy Labels
To Smooth or Not? When Label Smoothing Meets Noisy Labels
Jiaheng Wei
Hangyu Liu
Tongliang Liu
Gang Niu
Masashi Sugiyama
Yang Liu
NoLa
32
69
0
08 Jun 2021
Estimating Instance-dependent Bayes-label Transition Matrix using a Deep
  Neural Network
Estimating Instance-dependent Bayes-label Transition Matrix using a Deep Neural Network
Shuo Yang
Erkun Yang
Bo Han
Yang Liu
Min Xu
Gang Niu
Tongliang Liu
NoLa
BDL
29
42
0
27 May 2021
Clusterability as an Alternative to Anchor Points When Learning with
  Noisy Labels
Clusterability as an Alternative to Anchor Points When Learning with Noisy Labels
Zhaowei Zhu
Yiwen Song
Yang Liu
NoLa
13
91
0
10 Feb 2021
Learning Noise Transition Matrix from Only Noisy Labels via Total
  Variation Regularization
Learning Noise Transition Matrix from Only Noisy Labels via Total Variation Regularization
Yivan Zhang
Gang Niu
Masashi Sugiyama
NoLa
30
78
0
04 Feb 2021
Provably End-to-end Label-Noise Learning without Anchor Points
Provably End-to-end Label-Noise Learning without Anchor Points
Xuefeng Li
Tongliang Liu
Bo Han
Gang Niu
Masashi Sugiyama
NoLa
133
120
0
04 Feb 2021
12
Next