Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2001.02610
Cited By
iDLG: Improved Deep Leakage from Gradients
8 January 2020
Bo Zhao
Konda Reddy Mopuri
Hakan Bilen
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"iDLG: Improved Deep Leakage from Gradients"
50 / 111 papers shown
Title
Cutting Through Privacy: A Hyperplane-Based Data Reconstruction Attack in Federated Learning
Francesco Diana
André Nusser
Chuan Xu
Giovanni Neglia
27
0
0
15 May 2025
A Survey of Model Extraction Attacks and Defenses in Distributed Computing Environments
Kaixiang Zhao
Lincan Li
Kaize Ding
Neil Zhenqiang Gong
Yue Zhao
Yushun Dong
AAML
52
0
0
22 Feb 2025
CENSOR: Defense Against Gradient Inversion via Orthogonal Subspace Bayesian Sampling
Kaiyuan Zhang
Siyuan Cheng
Guangyu Shen
Bruno Ribeiro
Shengwei An
Pin-Yu Chen
Xinming Zhang
Ninghui Li
148
1
0
28 Jan 2025
CYCle: Choosing Your Collaborators Wisely to Enhance Collaborative Fairness in Decentralized Learning
Nurbek Tastan
Samuel Horváth
Karthik Nandakumar
FedML
69
0
0
21 Jan 2025
FEDLAD: Federated Evaluation of Deep Leakage Attacks and Defenses
Isaac Baglin
Xiatian Zhu
Simon Hadfield
FedML
32
1
0
05 Nov 2024
Gradients Stand-in for Defending Deep Leakage in Federated Learning
H. Yi
H. Ren
C. Hu
Y. Li
J. Deng
Xin Xie
FedML
35
0
0
11 Oct 2024
Advances in APPFL: A Comprehensive and Extensible Federated Learning Framework
Zilinghan Li
Shilan He
Ze Yang
Minseok Ryu
Kibaek Kim
Ravi K. Madduri
FedML
63
7
0
17 Sep 2024
Gradient Inversion of Federated Diffusion Models
Jiyue Huang
Chi Hong
Lydia Y. Chen
Stefanie Roos
FedML
39
1
0
30 May 2024
DAGER: Exact Gradient Inversion for Large Language Models
Ivo Petrov
Dimitar I. Dimitrov
Maximilian Baader
Mark Niklas Muller
Martin Vechev
FedML
63
3
0
24 May 2024
Leakage-Resilient and Carbon-Neutral Aggregation Featuring the Federated AI-enabled Critical Infrastructure
Zehang Deng
Ruoxi Sun
Minhui Xue
Sheng Wen
S. Çamtepe
Surya Nepal
Yang Xiang
45
1
0
24 May 2024
On the Efficiency of Privacy Attacks in Federated Learning
Nawrin Tabassum
Ka-Ho Chow
Xuyu Wang
Wenbin Zhang
Yanzhao Wu
FedML
39
1
0
15 Apr 2024
You Can Use But Cannot Recognize: Preserving Visual Privacy in Deep Neural Networks
Qiushi Li
Yan Zhang
Ju Ren
Qi Li
Yaoxue Zhang
AAML
PICV
41
23
0
05 Apr 2024
Federated Continual Learning via Knowledge Fusion: A Survey
Xin Yang
Hao Yu
Xin Gao
Hao Wang
Junbo Zhang
Tianrui Li
FedML
38
33
0
27 Dec 2023
Enabling End-to-End Secure Federated Learning in Biomedical Research on Heterogeneous Computing Environments with APPFLx
Trung-Hieu Hoang
Jordan D. Fuhrman
Ravi K. Madduri
Miao Li
Pranshu Chaturvedi
...
Kibaek Kim
Minseok Ryu
Ryan Chard
Eliu A. Huerta
Maryellen L. Giger
39
5
0
14 Dec 2023
Privacy-preserving quantum federated learning via gradient hiding
Changhao Li
Niraj Kumar
Zhixin Song
Shouvanik Chakrabarti
Marco Pistoia
FedML
33
20
0
07 Dec 2023
A Survey on Vulnerability of Federated Learning: A Learning Algorithm Perspective
Xianghua Xie
Chen Hu
Hanchi Ren
Jingjing Deng
FedML
AAML
50
19
0
27 Nov 2023
FLTrojan: Privacy Leakage Attacks against Federated Language Models Through Selective Weight Tampering
Md. Rafi Ur Rashid
Vishnu Asutosh Dasu
Kang Gu
Najrin Sultana
Shagufta Mehnaz
AAML
FedML
46
10
0
24 Oct 2023
Text Embeddings Reveal (Almost) As Much As Text
John X. Morris
Volodymyr Kuleshov
Vitaly Shmatikov
Alexander M. Rush
RALM
28
96
0
10 Oct 2023
Privacy Assessment on Reconstructed Images: Are Existing Evaluation Metrics Faithful to Human Perception?
Xiaoxiao Sun
Nidham Gazagnadou
Vivek Sharma
Lingjuan Lyu
Hongdong Li
Liang Zheng
47
8
0
22 Sep 2023
Approximate and Weighted Data Reconstruction Attack in Federated Learning
Yongcun Song
Ziqi Wang
Enrique Zuazua
AAML
FedML
29
4
0
13 Aug 2023
Feature Matching Data Synthesis for Non-IID Federated Learning
Zijian Li
Yuchang Sun
Jiawei Shao
Yuyi Mao
Jessie Hui Wang
Jun Zhang
28
20
0
09 Aug 2023
FLIPS: Federated Learning using Intelligent Participant Selection
R. Bhope
K.R. Jayaram
N. Venkatasubramanian
Ashish Verma
Gegi Thomas
FedML
29
3
0
07 Aug 2023
Compressed Private Aggregation for Scalable and Robust Federated Learning over Massive Networks
Natalie Lang
Nir Shlezinger
Rafael G. L. DÓliveira
S. E. Rouayheb
FedML
75
4
0
01 Aug 2023
Samplable Anonymous Aggregation for Private Federated Data Analysis
Kunal Talwar
Shan Wang
Audra McMillan
Vojta Jina
Vitaly Feldman
...
Congzheng Song
Karl Tarbe
Sebastian Vogt
L. Winstrom
Shundong Zhou
FedML
38
13
0
27 Jul 2023
Mitigating Cross-client GANs-based Attack in Federated Learning
Hong Huang
Xinyu Lei
Tao Xiang
AAML
55
1
0
25 Jul 2023
A Survey of What to Share in Federated Learning: Perspectives on Model Utility, Privacy Leakage, and Communication Efficiency
Jiawei Shao
Zijian Li
Wenqiang Sun
Tailin Zhou
Yuchang Sun
Lumin Liu
Zehong Lin
Yuyi Mao
Jun Zhang
FedML
43
23
0
20 Jul 2023
Practical Privacy-Preserving Gaussian Process Regression via Secret Sharing
Jinglong Luo
Yehong Zhang
Jiaqi Zhang
Shuang Qin
Haibo Wang
Yue Yu
Zenglin Xu
51
5
0
26 Jun 2023
FheFL: Fully Homomorphic Encryption Friendly Privacy-Preserving Federated Learning with Byzantine Users
Y. Rahulamathavan
Charuka Herath
Xiaolan Liu
S. Lambotharan
Carsten Maple
41
12
0
08 Jun 2023
Avoid Adversarial Adaption in Federated Learning by Multi-Metric Investigations
T. Krauß
Alexandra Dmitrienko
AAML
27
4
0
06 Jun 2023
Theoretically Principled Federated Learning for Balancing Privacy and Utility
Xiaojin Zhang
Wenjie Li
Kai Chen
Shutao Xia
Qian Yang
FedML
25
9
0
24 May 2023
Gradient Leakage Defense with Key-Lock Module for Federated Learning
Hanchi Ren
Jingjing Deng
Xianghua Xie
Xiaoke Ma
Jianfeng Ma
FedML
37
2
0
06 May 2023
A Game-theoretic Framework for Privacy-preserving Federated Learning
Xiaojin Zhang
Lixin Fan
Si-Yi Wang
Wenjie Li
Kai Chen
Qiang Yang
FedML
31
4
0
11 Apr 2023
RecUP-FL: Reconciling Utility and Privacy in Federated Learning via User-configurable Privacy Defense
Yue-li Cui
Syed Imran Ali Meerza
Zhuohang Li
Luyang Liu
Jiaxin Zhang
Jian-Dong Liu
AAML
FedML
34
4
0
11 Apr 2023
Secure Federated Learning against Model Poisoning Attacks via Client Filtering
D. Yaldiz
Tuo Zhang
Salman Avestimehr
AAML
FedML
24
14
0
31 Mar 2023
Robust and IP-Protecting Vertical Federated Learning against Unexpected Quitting of Parties
Jingwei Sun
Zhixu Du
Anna Dai
Saleh Baghersalimi
Alireza Amirshahi
David Atienza
Yiran Chen
FedML
21
8
0
28 Mar 2023
The Resource Problem of Using Linear Layer Leakage Attack in Federated Learning
Joshua C. Zhao
A. Elkordy
Atul Sharma
Yahya H. Ezzeldin
A. Avestimehr
S. Bagchi
FedML
45
12
0
27 Mar 2023
Considerations on the Theory of Training Models with Differential Privacy
Marten van Dijk
Phuong Ha Nguyen
FedML
31
2
0
08 Mar 2023
Differentially Private Distributed Convex Optimization
Minseok Ryu
Kibaek Kim
FedML
33
1
0
28 Feb 2023
Personalized Privacy-Preserving Framework for Cross-Silo Federated Learning
Van Tuan Tran
Huy Hieu Pham
Kok-Seng Wong
FedML
39
7
0
22 Feb 2023
A Survey of Trustworthy Federated Learning with Perspectives on Security, Robustness, and Privacy
Yifei Zhang
Dun Zeng
Jinglong Luo
Zenglin Xu
Irwin King
FedML
84
48
0
21 Feb 2023
Personalized and privacy-preserving federated heterogeneous medical image analysis with PPPML-HMI
Juexiao Zhou
Longxi Zhou
Di Wang
Xiaopeng Xu
Haoyang Li
Yuetan Chu
Wenkai Han
Xin Gao
30
20
0
20 Feb 2023
Bounding Training Data Reconstruction in DP-SGD
Jamie Hayes
Saeed Mahloujifar
Borja Balle
AAML
FedML
40
39
0
14 Feb 2023
Mutual Information Regularization for Vertical Federated Learning
Tianyuan Zou
Yang Liu
Ya-Qin Zhang
AAML
FedML
35
7
0
01 Jan 2023
Reconstructing Training Data from Model Gradient, Provably
Zihan Wang
Jason D. Lee
Qi Lei
FedML
32
24
0
07 Dec 2022
Refiner: Data Refining against Gradient Leakage Attacks in Federated Learning
Mingyuan Fan
Cen Chen
Chengyu Wang
Ximeng Liu
Wenmeng Zhou
Jun Huang
AAML
FedML
34
0
0
05 Dec 2022
Federated Learning Attacks and Defenses: A Survey
Yao Chen
Yijie Gui
Hong Lin
Wensheng Gan
Yongdong Wu
FedML
44
29
0
27 Nov 2022
Optimal Privacy Preserving for Federated Learning in Mobile Edge Computing
Hai M. Nguyen
N. Chu
Diep N. Nguyen
D. Hoang
Van-Dinh Nguyen
Minh Hoàng Hà
E. Dutkiewicz
Marwan Krunz
FedML
27
1
0
14 Nov 2022
Privacy-Aware Compression for Federated Learning Through Numerical Mechanism Design
Chuan Guo
Kamalika Chaudhuri
Pierre Stock
Michael G. Rabbat
FedML
33
7
0
08 Nov 2022
Two Models are Better than One: Federated Learning Is Not Private For Google GBoard Next Word Prediction
Mohamed Suliman
D. Leith
SILM
FedML
26
7
0
30 Oct 2022
Local Model Reconstruction Attacks in Federated Learning and their Uses
Ilias Driouich
Chuan Xu
Giovanni Neglia
F. Giroire
Eoin Thomas
AAML
FedML
36
2
0
28 Oct 2022
1
2
3
Next