Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2001.01920
Cited By
FedDANE: A Federated Newton-Type Method
7 January 2020
Tian Li
Anit Kumar Sahu
Manzil Zaheer
Maziar Sanjabi
Ameet Talwalkar
Virginia Smith
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"FedDANE: A Federated Newton-Type Method"
18 / 18 papers shown
Title
Rendering Wireless Environments Useful for Gradient Estimators: A Zero-Order Stochastic Federated Learning Method
Elissa Mhanna
Mohamad Assaad
80
1
0
30 Jan 2024
SCAFFOLD: Stochastic Controlled Averaging for Federated Learning
Sai Praneeth Karimireddy
Satyen Kale
M. Mohri
Sashank J. Reddi
Sebastian U. Stich
A. Suresh
FedML
37
345
0
14 Oct 2019
Federated Learning: Challenges, Methods, and Future Directions
Tian Li
Anit Kumar Sahu
Ameet Talwalkar
Virginia Smith
FedML
79
4,470
0
21 Aug 2019
On the Convergence of FedAvg on Non-IID Data
Xiang Li
Kaixuan Huang
Wenhao Yang
Shusen Wang
Zhihua Zhang
FedML
123
2,311
0
04 Jul 2019
Federated Optimization in Heterogeneous Networks
Tian Li
Anit Kumar Sahu
Manzil Zaheer
Maziar Sanjabi
Ameet Talwalkar
Virginia Smith
FedML
76
5,105
0
14 Dec 2018
LEAF: A Benchmark for Federated Settings
S. Caldas
Sai Meher Karthik Duddu
Peter Wu
Tian Li
Jakub Konecný
H. B. McMahan
Virginia Smith
Ameet Talwalkar
FedML
87
1,410
0
03 Dec 2018
Cooperative SGD: A unified Framework for the Design and Analysis of Communication-Efficient SGD Algorithms
Jianyu Wang
Gauri Joshi
78
348
0
22 Aug 2018
Local SGD Converges Fast and Communicates Little
Sebastian U. Stich
FedML
150
1,056
0
24 May 2018
Adaptive Federated Learning in Resource Constrained Edge Computing Systems
Shiqiang Wang
Tiffany Tuor
Theodoros Salonidis
K. Leung
C. Makaya
T. He
Kevin S. Chan
197
1,692
0
14 Apr 2018
On the convergence properties of a
K
K
K
-step averaging stochastic gradient descent algorithm for nonconvex optimization
Fan Zhou
Guojing Cong
112
233
0
03 Aug 2017
Federated Multi-Task Learning
Virginia Smith
Chao-Kai Chiang
Maziar Sanjabi
Ameet Talwalkar
FedML
77
1,791
0
30 May 2017
CoCoA: A General Framework for Communication-Efficient Distributed Optimization
Virginia Smith
Simone Forte
Chenxin Ma
Martin Takáč
Michael I. Jordan
Martin Jaggi
42
272
0
07 Nov 2016
AIDE: Fast and Communication Efficient Distributed Optimization
Sashank J. Reddi
Jakub Konecný
Peter Richtárik
Barnabás Póczós
Alex Smola
33
151
0
24 Aug 2016
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNN
AI4CE
278
18,300
0
27 May 2016
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
200
17,235
0
17 Feb 2016
Deep learning with Elastic Averaging SGD
Sixin Zhang
A. Choromańska
Yann LeCun
FedML
40
609
0
20 Dec 2014
Communication Efficient Distributed Optimization using an Approximate Newton-type Method
Ohad Shamir
Nathan Srebro
Tong Zhang
48
554
0
30 Dec 2013
Stochastic First- and Zeroth-order Methods for Nonconvex Stochastic Programming
Saeed Ghadimi
Guanghui Lan
ODL
48
1,538
0
22 Sep 2013
1