ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.01596
  4. Cited By
Deep learning for brake squeal: vibration detection, characterization
  and prediction

Deep learning for brake squeal: vibration detection, characterization and prediction

2 January 2020
M. Stender
M. Tiedemann
David Spieler
Daniel Schoepflin
N. Hoffmann
S. Oberst
ArXivPDFHTML

Papers citing "Deep learning for brake squeal: vibration detection, characterization and prediction"

3 / 3 papers shown
Title
Surface Similarity Parameter: A New Machine Learning Loss Metric for
  Oscillatory Spatio-Temporal Data
Surface Similarity Parameter: A New Machine Learning Loss Metric for Oscillatory Spatio-Temporal Data
Mathies Wedler
M. Stender
M. Klein
Svenja Ehlers
N. Hoffmann
31
7
0
14 Apr 2022
A Review of Machine Learning Methods Applied to Structural Dynamics and
  Vibroacoustic
A Review of Machine Learning Methods Applied to Structural Dynamics and Vibroacoustic
Barbara Z Cunha
C. Droz
A. Zine
Stéphane Foulard
M. Ichchou
AI4CE
37
84
0
13 Apr 2022
CNN-DST: ensemble deep learning based on Dempster-Shafer theory for
  vibration-based fault recognition
CNN-DST: ensemble deep learning based on Dempster-Shafer theory for vibration-based fault recognition
V. Yaghoubi
Liangliang Cheng
W. Van Paepegem
M. Kersemans
13
11
0
14 Oct 2021
1