Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2001.01550
Cited By
Opportunities and Challenges of Deep Learning Methods for Electrocardiogram Data: A Systematic Review
28 December 2019
linda Qiao
Yuxi Zhou
Junyuan Shang
Cao Xiao
Jimeng Sun
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Opportunities and Challenges of Deep Learning Methods for Electrocardiogram Data: A Systematic Review"
7 / 7 papers shown
Title
Deep Neural Networks Generalization and Fine-Tuning for 12-lead ECG Classification
A. Avetisyan
Shahane Tigranyan
A. Asatryan
O. Mashkova
Sergey Skorik
V. Ananev
Yury Markin
LM&MA
27
5
0
19 May 2023
LightX3ECG: A Lightweight and eXplainable Deep Learning System for 3-lead Electrocardiogram Classification
Khiem H. Le
Hieu H. Pham
Thao BT. Nguyen
Tu Nguyen
T. Thanh
Cuong D. Do
18
34
0
25 Jul 2022
Decorrelative Network Architecture for Robust Electrocardiogram Classification
Christopher Wiedeman
Ge Wang
OOD
13
2
0
19 Jul 2022
Robustness of convolutional neural networks to physiological ECG noise
Jenny Venton
P. Harris
A. Sundar
N. Smith
P. Aston
39
26
0
02 Aug 2021
Self-supervised representation learning from 12-lead ECG data
Temesgen Mehari
Nils Strodthoff
SSL
21
141
0
23 Mar 2021
Interpretable Deep Learning for Automatic Diagnosis of 12-lead Electrocardiogram
Dongdong Zhang
Xiaohui Yuan
Ping Zhang
21
111
0
20 Oct 2020
HOLMES: Health OnLine Model Ensemble Serving for Deep Learning Models in Intensive Care Units
linda Qiao
Yanbo Xu
Alind Khare
Satria Priambada
K. Maher
Alaa Aljiffry
Jimeng Sun
Alexey Tumanov
OOD
31
85
0
10 Aug 2020
1