ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.12404
  4. Cited By
A practical guide to pseudo-marginal methods for computational inference
  in systems biology

A practical guide to pseudo-marginal methods for computational inference in systems biology

28 December 2019
D. Warne
R. Baker
Matthew J. Simpson
ArXivPDFHTML

Papers citing "A practical guide to pseudo-marginal methods for computational inference in systems biology"

12 / 12 papers shown
Title
Particle Methods for Stochastic Differential Equation Mixed Effects
  Models
Particle Methods for Stochastic Differential Equation Mixed Effects Models
Imke Botha
Robert Kohn
Christopher C. Drovandi
27
21
0
25 Jul 2019
Distributions.jl: Definition and Modeling of Probability Distributions
  in the JuliaStats Ecosystem
Distributions.jl: Definition and Modeling of Probability Distributions in the JuliaStats Ecosystem
Mathieu Besançon
Theodore Papamarkou
D. Anthoff
Alex Arslan
Simon Byrne
Dahua Lin
John Pearson
GP
52
80
0
19 Jul 2019
Efficient Bayesian estimation for GARCH-type models via Sequential Monte
  Carlo
Efficient Bayesian estimation for GARCH-type models via Sequential Monte Carlo
Dan Li
A. Clements
Christopher C. Drovandi
33
16
0
10 Jun 2019
Rank-normalization, folding, and localization: An improved $\widehat{R}$
  for assessing convergence of MCMC
Rank-normalization, folding, and localization: An improved R^\widehat{R}R for assessing convergence of MCMC
Aki Vehtari
Andrew Gelman
Daniel P. Simpson
Bob Carpenter
Paul-Christian Bürkner
32
919
0
19 Mar 2019
Bayesian Static Parameter Estimation for Partially Observed Diffusions
  via Multilevel Monte Carlo
Bayesian Static Parameter Estimation for Partially Observed Diffusions via Multilevel Monte Carlo
Ajay Jasra
K. Kamatani
K. Law
Yan Zhou
32
30
0
20 Jan 2017
Approximation and inference methods for stochastic biochemical kinetics
  - a tutorial review
Approximation and inference methods for stochastic biochemical kinetics - a tutorial review
David Schnoerr
G. Sanguinetti
R. Grima
112
217
0
23 Aug 2016
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis
  of Big Data
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis of Big Data
J. Bierkens
Paul Fearnhead
Gareth O. Roberts
67
232
0
11 Jul 2016
Multilevel particle filter
Multilevel particle filter
Ajay Jasra
K. Kamatani
K. Law
Yan Zhou
55
72
0
16 Oct 2015
MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster
MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster
S. Cotter
Gareth O. Roberts
Andrew M. Stuart
D. White
62
480
0
03 Feb 2012
The pseudo-marginal approach for efficient Monte Carlo computations
The pseudo-marginal approach for efficient Monte Carlo computations
Christophe Andrieu
Gareth O. Roberts
112
890
0
31 Mar 2009
Approximate Bayesian computation scheme for parameter inference and
  model selection in dynamical systems
Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems
Tina Toni
David Welch
N. Strelkowa
Andreas Ipsen
M. Stumpf
155
1,542
0
14 Jan 2009
Approximate Bayesian computation (ABC) gives exact results under the
  assumption of model error
Approximate Bayesian computation (ABC) gives exact results under the assumption of model error
Richard D. Wilkinson
77
273
0
20 Nov 2008
1