ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.12125
14
69

Large-scale 6D Object Pose Estimation Dataset for Industrial Bin-Picking

6 December 2019
Kilian Kleeberger
Christian Landgraf
Marco F. Huber
    3DPC
    3DV
ArXivPDFHTML
Abstract

In this paper, we introduce a new public dataset for 6D object pose estimation and instance segmentation for industrial bin-picking. The dataset comprises both synthetic and real-world scenes. For both, point clouds, depth images, and annotations comprising the 6D pose (position and orientation), a visibility score, and a segmentation mask for each object are provided. Along with the raw data, a method for precisely annotating real-world scenes is proposed. To the best of our knowledge, this is the first public dataset for 6D object pose estimation and instance segmentation for bin-picking containing sufficiently annotated data for learning-based approaches. Furthermore, it is one of the largest public datasets for object pose estimation in general. The dataset is publicly available at http://www.bin-picking.ai/en/dataset.html.

View on arXiv
Comments on this paper