Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.11328
Cited By
Assessing differentially private deep learning with Membership Inference
24 December 2019
Daniel Bernau
Philip-William Grassal
J. Robl
Florian Kerschbaum
MIACV
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Assessing differentially private deep learning with Membership Inference"
12 / 12 papers shown
Title
Semantic Membership Inference Attack against Large Language Models
Hamid Mozaffari
Virendra J. Marathe
MIALM
53
3
0
14 Jun 2024
PrivatEyes: Appearance-based Gaze Estimation Using Federated Secure Multi-Party Computation
Mayar Elfares
Pascal Reisert
Zhiming Hu
Wenwu Tang
Ralf Küsters
Andreas Bulling
FedML
26
4
0
29 Feb 2024
Exploring the Limits of Differentially Private Deep Learning with Group-wise Clipping
Jiyan He
Xuechen Li
Da Yu
Huishuai Zhang
Janardhan Kulkarni
Y. Lee
A. Backurs
Nenghai Yu
Jiang Bian
30
46
0
03 Dec 2022
Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent
Da Yu
Gautam Kamath
Janardhan Kulkarni
Tie-Yan Liu
Jian Yin
Huishuai Zhang
19
17
0
06 Jun 2022
Mixed Differential Privacy in Computer Vision
Aditya Golatkar
Alessandro Achille
Yu-Xiang Wang
Aaron Roth
Michael Kearns
Stefano Soatto
PICV
VLM
20
49
0
22 Mar 2022
Privacy-Preserving Machine Learning: Methods, Challenges and Directions
Runhua Xu
Nathalie Baracaldo
J. Joshi
32
100
0
10 Aug 2021
Responsible and Regulatory Conform Machine Learning for Medicine: A Survey of Challenges and Solutions
Eike Petersen
Yannik Potdevin
Esfandiar Mohammadi
Stephan Zidowitz
Sabrina Breyer
...
Sandra Henn
Ludwig Pechmann
M. Leucker
P. Rostalski
Christian Herzog
FaML
AILaw
OOD
29
21
0
20 Jul 2021
Large Scale Private Learning via Low-rank Reparametrization
Da Yu
Huishuai Zhang
Wei Chen
Jian Yin
Tie-Yan Liu
23
100
0
17 Jun 2021
Can Differential Privacy Practically Protect Collaborative Deep Learning Inference for the Internet of Things?
Jihyeon Ryu
Yifeng Zheng
Yansong Gao
A. Abuadbba
Junyaup Kim
Dongho Won
Surya Nepal
Hyoungshick Kim
Cong Wang
18
12
0
08 Apr 2021
Quantifying identifiability to choose and audit
ε
ε
ε
in differentially private deep learning
Daniel Bernau
Günther Eibl
Philip-William Grassal
Hannah Keller
Florian Kerschbaum
FedML
14
5
0
04 Mar 2021
Do Not Let Privacy Overbill Utility: Gradient Embedding Perturbation for Private Learning
Da Yu
Huishuai Zhang
Wei Chen
Tie-Yan Liu
FedML
SILM
94
110
0
25 Feb 2021
Hide-and-Seek Privacy Challenge
James Jordon
Daniel Jarrett
Jinsung Yoon
Tavian Barnes
Paul Elbers
P. Thoral
A. Ercole
Cheng Zhang
Danielle Belgrave
M. Schaar
MIACV
14
24
0
23 Jul 2020
1