Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.10382
Cited By
Deep Learning via Dynamical Systems: An Approximation Perspective
22 December 2019
Qianxiao Li
Ting Lin
Zuowei Shen
AI4TS
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Learning via Dynamical Systems: An Approximation Perspective"
50 / 62 papers shown
Title
Universal Approximation Theorem for Deep Q-Learning via FBSDE System
Qian Qi
29
0
0
09 May 2025
Universal Approximation Theorem of Deep Q-Networks
Qian Qi
37
1
0
04 May 2025
Uncertainty propagation in feed-forward neural network models
Jeremy Diamzon
Daniele Venturi
62
0
0
27 Mar 2025
Finite Samples for Shallow Neural Networks
Yu Xia
Zhiqiang Xu
43
0
0
17 Mar 2025
Numerical and statistical analysis of NeuralODE with Runge-Kutta time integration
Emily C. Ehrhardt
Hanno Gottschalk
Tobias Riedlinger
43
0
0
13 Mar 2025
Universal approximation property of ODENet and ResNet with a single activation function
M. Kimura
Kazunori Matsui
Yosuke Mizuno
28
0
0
22 Oct 2024
Feedback Favors the Generalization of Neural ODEs
Jindou Jia
Zihan Yang
Meng Wang
Kexin Guo
Jianfei Yang
Xiang Yu
Lei Guo
OOD
AI4CE
43
2
0
14 Oct 2024
Demystifying the Token Dynamics of Deep Selective State Space Models
Thieu N. Vo
Tung D. Pham
Xin T. Tong
Tan Minh Nguyen
Mamba
49
0
0
04 Oct 2024
Deep Koopman-layered Model with Universal Property Based on Toeplitz Matrices
Yuka Hashimoto
Tomoharu Iwata
28
0
0
03 Oct 2024
Clustering in pure-attention hardmax transformers and its role in sentiment analysis
Albert Alcalde
Giovanni Fantuzzi
Enrique Zuazua
35
3
0
26 Jun 2024
Graph Neural Aggregation-diffusion with Metastability
Kaiyuan Cui
Xinyan Wang
Zicheng Zhang
Weichen Zhao
39
2
0
29 Mar 2024
Diffeomorphic Measure Matching with Kernels for Generative Modeling
Biraj Pandey
Bamdad Hosseini
Pau Batlle
H. Owhadi
25
3
0
12 Feb 2024
Interplay between depth and width for interpolation in neural ODEs
Antonio Álvarez-López
Arselane Hadj Slimane
Enrique Zuazua
25
7
0
18 Jan 2024
Differential Equations for Continuous-Time Deep Learning
Lars Ruthotto
AI4TS
AI4CE
SyDa
BDL
37
7
0
08 Jan 2024
A mathematical perspective on Transformers
Borjan Geshkovski
Cyril Letrouit
Yury Polyanskiy
Philippe Rigollet
EDL
AI4CE
45
36
0
17 Dec 2023
From Continuous Dynamics to Graph Neural Networks: Neural Diffusion and Beyond
Andi Han
Dai Shi
Lequan Lin
Junbin Gao
AI4CE
GNN
37
21
0
16 Oct 2023
Minimum width for universal approximation using ReLU networks on compact domain
Namjun Kim
Chanho Min
Sejun Park
VLM
29
10
0
19 Sep 2023
Distribution learning via neural differential equations: a nonparametric statistical perspective
Youssef Marzouk
Zhi Ren
Sven Wang
Jakob Zech
29
11
0
03 Sep 2023
On the Approximation of Bi-Lipschitz Maps by Invertible Neural Networks
Bangti Jin
Zehui Zhou
Jun Zou
26
3
0
18 Aug 2023
Deep Network Approximation: Beyond ReLU to Diverse Activation Functions
Shijun Zhang
Jianfeng Lu
Hongkai Zhao
27
17
0
13 Jul 2023
A Constructive Approach to Function Realization by Neural Stochastic Differential Equations
Tanya Veeravalli
Maxim Raginsky
11
0
0
01 Jul 2023
Coupling parameter and particle dynamics for adaptive sampling in Neural Galerkin schemes
Yuxiao Wen
Eric Vanden-Eijnden
Benjamin Peherstorfer
24
12
0
27 Jun 2023
Vocabulary for Universal Approximation: A Linguistic Perspective of Mapping Compositions
Yongqiang Cai
CoGe
80
6
0
20 May 2023
Universal Approximation Property of Hamiltonian Deep Neural Networks
M. Zakwan
M. d’Angelo
Giancarlo Ferrari-Trecate
36
5
0
21 Mar 2023
On Enhancing Expressive Power via Compositions of Single Fixed-Size ReLU Network
Shijun Zhang
Jianfeng Lu
Hongkai Zhao
CoGe
33
4
0
29 Jan 2023
Nonlinear controllability and function representation by neural stochastic differential equations
Tanya Veeravalli
Maxim Raginsky
DiffM
16
2
0
01 Dec 2022
Learning Robust State Observers using Neural ODEs (longer version)
Keyan Miao
Konstantinos Gatsis
OOD
11
12
0
01 Dec 2022
On the Universal Approximation Property of Deep Fully Convolutional Neural Networks
Ting-Wei Lin
Zuowei Shen
Qianxiao Li
34
4
0
25 Nov 2022
Residual-based error correction for neural operator accelerated infinite-dimensional Bayesian inverse problems
Lianghao Cao
Thomas O'Leary-Roseberry
Prashant K. Jha
J. Oden
Omar Ghattas
28
26
0
06 Oct 2022
Dynamical systems' based neural networks
E. Celledoni
Davide Murari
B. Owren
Carola-Bibiane Schönlieb
Ferdia Sherry
OOD
43
10
0
05 Oct 2022
Achieve the Minimum Width of Neural Networks for Universal Approximation
Yongqiang Cai
11
18
0
23 Sep 2022
Neural Generalized Ordinary Differential Equations with Layer-varying Parameters
Duo Yu
Hongyu Miao
Hulin Wu
37
4
0
21 Sep 2022
The Mori-Zwanzig formulation of deep learning
D. Venturi
Xiantao Li
25
1
0
12 Sep 2022
Deep Neural Network Approximation of Invariant Functions through Dynamical Systems
Qianxiao Li
T. Lin
Zuowei Shen
24
6
0
18 Aug 2022
Analysis of function approximation and stability of general DNNs in directed acyclic graphs using un-rectifying analysis
Wonjun Hwang
Shih-Shuo Tung
11
4
0
13 Jun 2022
Deep neural networks can stably solve high-dimensional, noisy, non-linear inverse problems
Andrés Felipe Lerma Pineda
P. Petersen
28
5
0
02 Jun 2022
Do Residual Neural Networks discretize Neural Ordinary Differential Equations?
Michael E. Sander
Pierre Ablin
Gabriel Peyré
35
25
0
29 May 2022
Neural Network Architecture Beyond Width and Depth
Zuowei Shen
Haizhao Yang
Shijun Zhang
3DV
MDE
33
13
0
19 May 2022
Universal approximation property of invertible neural networks
Isao Ishikawa
Takeshi Teshima
Koichi Tojo
Kenta Oono
Masahiro Ikeda
Masashi Sugiyama
43
29
0
15 Apr 2022
Learning via nonlinear conjugate gradients and depth-varying neural ODEs
George Baravdish
Gabriel Eilertsen
Rym Jaroudi
B. Johansson
Lukávs Malý
Jonas Unger
21
3
0
11 Feb 2022
Learning High-Dimensional Parametric Maps via Reduced Basis Adaptive Residual Networks
Thomas O'Leary-Roseberry
Xiaosong Du
A. Chaudhuri
J. Martins
Karen E. Willcox
Omar Ghattas
30
22
0
14 Dec 2021
Neural network stochastic differential equation models with applications to financial data forecasting
Luxuan Yang
Ting Gao
Yubin Lu
Jinqiao Duan
Tao Liu
AI4TS
18
37
0
25 Nov 2021
Deep Network Approximation in Terms of Intrinsic Parameters
Zuowei Shen
Haizhao Yang
Shijun Zhang
21
9
0
15 Nov 2021
TaylorSwiftNet: Taylor Driven Temporal Modeling for Swift Future Frame Prediction
M. Pourheydari
Emad Bahrami Rad
Mohsen Fayyaz
Gianpiero Francesca
M. Noroozi
Juergen Gall
24
1
0
27 Oct 2021
Neural Flows: Efficient Alternative to Neural ODEs
Marin Bilovs
Johanna Sommer
Syama Sundar Rangapuram
Tim Januschowski
Stephan Günnemann
AI4TS
21
70
0
25 Oct 2021
Heavy Ball Neural Ordinary Differential Equations
Hedi Xia
Vai Suliafu
H. Ji
T. Nguyen
Andrea L. Bertozzi
Stanley J. Osher
Bao Wang
38
56
0
10 Oct 2021
An Optimal Control Framework for Joint-channel Parallel MRI Reconstruction without Coil Sensitivities
Wanyu Bian
Yunmei Chen
X. Ye
44
14
0
20 Sep 2021
Deep Network Approximation: Achieving Arbitrary Accuracy with Fixed Number of Neurons
Zuowei Shen
Haizhao Yang
Shijun Zhang
56
36
0
06 Jul 2021
Approximation capabilities of measure-preserving neural networks
Aiqing Zhu
Pengzhan Jin
Yifa Tang
26
8
0
21 Jun 2021
Calibrating multi-dimensional complex ODE from noisy data via deep neural networks
Kexuan Li
Fangfang Wang
Ruiqi Liu
Fan Yang
Zuofeng Shang
29
7
0
07 Jun 2021
1
2
Next