ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.09685
  4. Cited By
Segmentations-Leak: Membership Inference Attacks and Defenses in
  Semantic Image Segmentation

Segmentations-Leak: Membership Inference Attacks and Defenses in Semantic Image Segmentation

20 December 2019
Yang He
Shadi Rahimian
Bernt Schiele
Mario Fritz
    MIACV
ArXivPDFHTML

Papers citing "Segmentations-Leak: Membership Inference Attacks and Defenses in Semantic Image Segmentation"

15 / 15 papers shown
Title
Synthetic Data Privacy Metrics
Synthetic Data Privacy Metrics
Amy Steier
Lipika Ramaswamy
Andre Manoel
Alexa Haushalter
45
0
0
08 Jan 2025
What Sketch Explainability Really Means for Downstream Tasks
What Sketch Explainability Really Means for Downstream Tasks
Hmrishav Bandyopadhyay
Pinaki Nath Chowdhury
A. Bhunia
Aneeshan Sain
Tao Xiang
Yi-Zhe Song
30
4
0
14 Mar 2024
SoK: Let the Privacy Games Begin! A Unified Treatment of Data Inference
  Privacy in Machine Learning
SoK: Let the Privacy Games Begin! A Unified Treatment of Data Inference Privacy in Machine Learning
A. Salem
Giovanni Cherubin
David E. Evans
Boris Köpf
Andrew J. Paverd
Anshuman Suri
Shruti Tople
Santiago Zanella Béguelin
47
35
0
21 Dec 2022
Membership Inference Attacks Against Semantic Segmentation Models
Membership Inference Attacks Against Semantic Segmentation Models
Tomás Chobola
Dmitrii Usynin
Georgios Kaissis
MIACV
32
6
0
02 Dec 2022
VBLC: Visibility Boosting and Logit-Constraint Learning for Domain
  Adaptive Semantic Segmentation under Adverse Conditions
VBLC: Visibility Boosting and Logit-Constraint Learning for Domain Adaptive Semantic Segmentation under Adverse Conditions
Mingjiang Li
Binhui Xie
Shuang Li
Chi Harold Liu
Xinjing Cheng
36
12
0
22 Nov 2022
On the Importance of Architecture and Feature Selection in
  Differentially Private Machine Learning
On the Importance of Architecture and Feature Selection in Differentially Private Machine Learning
Wenxuan Bao
L. A. Bauer
Vincent Bindschaedler
OOD
29
4
0
13 May 2022
Unsupervised Contrastive Domain Adaptation for Semantic Segmentation
Unsupervised Contrastive Domain Adaptation for Semantic Segmentation
Feihu Zhang
V. Koltun
Philip Torr
René Ranftl
Stephan R. Richter
21
6
0
18 Apr 2022
Advances in adversarial attacks and defenses in computer vision: A
  survey
Advances in adversarial attacks and defenses in computer vision: A survey
Naveed Akhtar
Ajmal Mian
Navid Kardan
M. Shah
AAML
26
235
0
01 Aug 2021
Survey: Leakage and Privacy at Inference Time
Survey: Leakage and Privacy at Inference Time
Marija Jegorova
Chaitanya Kaul
Charlie Mayor
Alison Q. OÑeil
Alexander Weir
Roderick Murray-Smith
Sotirios A. Tsaftaris
PILM
MIACV
21
71
0
04 Jul 2021
Membership Inference on Word Embedding and Beyond
Membership Inference on Word Embedding and Beyond
Saeed Mahloujifar
Huseyin A. Inan
Melissa Chase
Esha Ghosh
Marcello Hasegawa
MIACV
SILM
25
46
0
21 Jun 2021
Membership Inference Attacks on Machine Learning: A Survey
Membership Inference Attacks on Machine Learning: A Survey
Hongsheng Hu
Z. Salcic
Lichao Sun
Gillian Dobbie
Philip S. Yu
Xuyun Zhang
MIACV
35
412
0
14 Mar 2021
Membership Inference Attacks are Easier on Difficult Problems
Membership Inference Attacks are Easier on Difficult Problems
Avital Shafran
Shmuel Peleg
Yedid Hoshen
MIACV
16
16
0
15 Feb 2021
A Survey of Privacy Attacks in Machine Learning
A Survey of Privacy Attacks in Machine Learning
M. Rigaki
Sebastian Garcia
PILM
AAML
39
213
0
15 Jul 2020
When Machine Unlearning Jeopardizes Privacy
When Machine Unlearning Jeopardizes Privacy
Min Chen
Zhikun Zhang
Tianhao Wang
Michael Backes
Mathias Humbert
Yang Zhang
MIACV
31
217
0
05 May 2020
Disentangling Adversarial Robustness and Generalization
Disentangling Adversarial Robustness and Generalization
David Stutz
Matthias Hein
Bernt Schiele
AAML
OOD
194
274
0
03 Dec 2018
1