ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.09254
  4. Cited By
CNN-LSTM models for Multi-Speaker Source Separation using Bayesian Hyper
  Parameter Optimization

CNN-LSTM models for Multi-Speaker Source Separation using Bayesian Hyper Parameter Optimization

19 December 2019
Jeroen Zegers
Hugo Van hamme
    BDL
ArXivPDFHTML

Papers citing "CNN-LSTM models for Multi-Speaker Source Separation using Bayesian Hyper Parameter Optimization"

13 / 13 papers shown
Title
Memory Time Span in LSTMs for Multi-Speaker Source Separation
Memory Time Span in LSTMs for Multi-Speaker Source Separation
Jeroen Zegers
Hugo Van hamme
15
5
0
24 Aug 2018
Multi-scenario deep learning for multi-speaker source separation
Multi-scenario deep learning for multi-speaker source separation
Jeroen Zegers
Hugo Van hamme
18
3
0
24 Aug 2018
TasNet: time-domain audio separation network for real-time,
  single-channel speech separation
TasNet: time-domain audio separation network for real-time, single-channel speech separation
Yi Luo
N. Mesgarani
64
626
0
01 Nov 2017
Speaker-independent Speech Separation with Deep Attractor Network
Speaker-independent Speech Separation with Deep Attractor Network
Yi Luo
Zhuo Chen
N. Mesgarani
36
247
0
12 Jul 2017
Multi-talker Speech Separation with Utterance-level Permutation
  Invariant Training of Deep Recurrent Neural Networks
Multi-talker Speech Separation with Utterance-level Permutation Invariant Training of Deep Recurrent Neural Networks
Morten Kolbaek
Dong Yu
Zheng-Hua Tan
Jesper Jensen
55
725
0
18 Mar 2017
Single-Channel Multi-Speaker Separation using Deep Clustering
Single-Channel Multi-Speaker Separation using Deep Clustering
Y. Isik
Jonathan Le Roux
Zhuo Chen
Shinji Watanabe
J. Hershey
62
430
0
07 Jul 2016
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
  Systems
TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
Martín Abadi
Ashish Agarwal
P. Barham
E. Brevdo
Zhiwen Chen
...
Pete Warden
Martin Wattenberg
Martin Wicke
Yuan Yu
Xiaoqiang Zheng
218
11,135
0
14 Mar 2016
Efficient Character-level Document Classification by Combining
  Convolution and Recurrent Layers
Efficient Character-level Document Classification by Combining Convolution and Recurrent Layers
Yijun Xiao
Kyunghyun Cho
36
219
0
01 Feb 2016
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image
  Segmentation
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
852
15,718
0
02 Nov 2015
Deep clustering: Discriminative embeddings for segmentation and
  separation
Deep clustering: Discriminative embeddings for segmentation and separation
J. Hershey
Zhuo Chen
Jonathan Le Roux
Shinji Watanabe
57
1,316
0
18 Aug 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.1K
149,474
0
22 Dec 2014
Long-term Recurrent Convolutional Networks for Visual Recognition and
  Description
Long-term Recurrent Convolutional Networks for Visual Recognition and Description
Jeff Donahue
Lisa Anne Hendricks
Marcus Rohrbach
Subhashini Venugopalan
S. Guadarrama
Kate Saenko
Trevor Darrell
VLM
129
6,046
0
17 Nov 2014
Practical Bayesian Optimization of Machine Learning Algorithms
Practical Bayesian Optimization of Machine Learning Algorithms
Jasper Snoek
Hugo Larochelle
Ryan P. Adams
302
7,883
0
13 Jun 2012
1