Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.09024
Cited By
Measuring the Quality of Explanations: The System Causability Scale (SCS). Comparing Human and Machine Explanations
19 December 2019
Andreas Holzinger
André M. Carrington
Heimo Muller
LRM
XAI
ELM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Measuring the Quality of Explanations: The System Causability Scale (SCS). Comparing Human and Machine Explanations"
37 / 37 papers shown
Title
Extending Decision Predicate Graphs for Comprehensive Explanation of Isolation Forest
Matteo Ceschin
Leonardo Arrighi
Luca Longo
Sylvio Barbon Junior
31
0
0
06 May 2025
Honey, I Shrunk the Language Model: Impact of Knowledge Distillation Methods on Performance and Explainability
Daniel Hendriks
Philipp Spitzer
Niklas Kühl
G. Satzger
27
2
0
22 Apr 2025
Is Conversational XAI All You Need? Human-AI Decision Making With a Conversational XAI Assistant
Gaole He
Nilay Aishwarya
U. Gadiraju
51
6
0
29 Jan 2025
XEQ Scale for Evaluating XAI Experience Quality
A. Wijekoon
Nirmalie Wiratunga
D. Corsar
Kyle Martin
Ikechukwu Nkisi-Orji
Belén Díaz-Agudo
Derek Bridge
55
2
0
20 Jan 2025
Explainable AI: Definition and attributes of a good explanation for health AI
E. Kyrimi
S. McLachlan
Jared M Wohlgemut
Zane B Perkins
David A. Lagnado
W. Marsh
the ExAIDSS Expert Group
XAI
36
1
0
09 Sep 2024
Exploring Commonalities in Explanation Frameworks: A Multi-Domain Survey Analysis
Eduard Barbu
Marharytha Domnich
Raul Vicente
Nikos Sakkas
André Morim
57
1
0
20 May 2024
Decoding visual brain representations from electroencephalography through Knowledge Distillation and latent diffusion models
Matteo Ferrante
T. Boccato
S. Bargione
N. Toschi
DiffM
35
7
0
08 Sep 2023
A New Perspective on Evaluation Methods for Explainable Artificial Intelligence (XAI)
Timo Speith
Markus Langer
34
12
0
26 Jul 2023
Can We Trust Explainable AI Methods on ASR? An Evaluation on Phoneme Recognition
Xiao-lan Wu
P. Bell
A. Rajan
29
5
0
29 May 2023
Explainable Deep Reinforcement Learning: State of the Art and Challenges
G. Vouros
XAI
52
77
0
24 Jan 2023
Explainable AI for Bioinformatics: Methods, Tools, and Applications
Md. Rezaul Karim
Tanhim Islam
Oya Beyan
Christoph Lange
Michael Cochez
Dietrich-Rebholz Schuhmann
Stefan Decker
34
68
0
25 Dec 2022
Context-dependent Explainability and Contestability for Trustworthy Medical Artificial Intelligence: Misclassification Identification of Morbidity Recognition Models in Preterm Infants
Isil Guzey
Ozlem Ucar
N. A. Çiftdemir
B. Acunaş
27
1
0
17 Dec 2022
Greybox XAI: a Neural-Symbolic learning framework to produce interpretable predictions for image classification
Adrien Bennetot
Gianni Franchi
Javier Del Ser
Raja Chatila
Natalia Díaz Rodríguez
AAML
34
28
0
26 Sep 2022
Explainable AI for clinical and remote health applications: a survey on tabular and time series data
Flavio Di Martino
Franca Delmastro
AI4TS
33
91
0
14 Sep 2022
On Specification-based Cyber-Attack Detection in Smart Grids
Ömer Sen
Maik Lühman
Florian Sprünken
Immanuel Hacker
Andreas Ulbig
Michael Andres
Martin Henze
38
5
0
09 Sep 2022
Grounding Explainability Within the Context of Global South in XAI
Deepa Singh
M. Slupczynski
Ajit G. Pillai
Vinoth Pandian Sermuga Pandian
19
3
0
13 May 2022
Keep Your Friends Close and Your Counterfactuals Closer: Improved Learning From Closest Rather Than Plausible Counterfactual Explanations in an Abstract Setting
Ulrike Kuhl
André Artelt
Barbara Hammer
40
25
0
11 May 2022
Let's Go to the Alien Zoo: Introducing an Experimental Framework to Study Usability of Counterfactual Explanations for Machine Learning
Ulrike Kuhl
André Artelt
Barbara Hammer
38
18
0
06 May 2022
A Meta Survey of Quality Evaluation Criteria in Explanation Methods
Helena Lofstrom
K. Hammar
Ulf Johansson
XAI
32
11
0
25 Mar 2022
Quantus: An Explainable AI Toolkit for Responsible Evaluation of Neural Network Explanations and Beyond
Anna Hedström
Leander Weber
Dilyara Bareeva
Daniel G. Krakowczyk
Franz Motzkus
Wojciech Samek
Sebastian Lapuschkin
Marina M.-C. Höhne
XAI
ELM
21
169
0
14 Feb 2022
Transparency of Deep Neural Networks for Medical Image Analysis: A Review of Interpretability Methods
Zohaib Salahuddin
Henry C. Woodruff
A. Chatterjee
Philippe Lambin
29
306
0
01 Nov 2021
A Survey on Methods and Metrics for the Assessment of Explainability under the Proposed AI Act
Francesco Sovrano
Salvatore Sapienza
M. Palmirani
F. Vitali
14
17
0
21 Oct 2021
An Objective Metric for Explainable AI: How and Why to Estimate the Degree of Explainability
Francesco Sovrano
F. Vitali
42
30
0
11 Sep 2021
Optimising Knee Injury Detection with Spatial Attention and Validating Localisation Ability
Niamh Belton
I. Welaratne
Adil Dahlan
Ron Hearne
Misgina Tsighe Hagos
Aonghus Lawlor
Kathleen M. Curran
24
13
0
18 Aug 2021
Deep ROC Analysis and AUC as Balanced Average Accuracy to Improve Model Selection, Understanding and Interpretation
André M. Carrington
D. Manuel
Paul Fieguth
T. Ramsay
V. Osmani
...
S. Hawken
M. McInnes
Olivia Magwood
Yusuf Sheikh
Andreas Holzinger
25
129
0
21 Mar 2021
Counterfactuals and Causability in Explainable Artificial Intelligence: Theory, Algorithms, and Applications
Yu-Liang Chou
Catarina Moreira
P. Bruza
Chun Ouyang
Joaquim A. Jorge
CML
47
176
0
07 Mar 2021
DeepHateExplainer: Explainable Hate Speech Detection in Under-resourced Bengali Language
Md. Rezaul Karim
Sumon Dey
Tanhim Islam
Sagor Sarker
Mehadi Hasan Menon
Kabir Hossain
Bharathi Raja Chakravarthi
Md. Azam Hossain
Stefan Decker
30
77
0
28 Dec 2020
The Three Ghosts of Medical AI: Can the Black-Box Present Deliver?
Thomas P. Quinn
Stephan Jacobs
M. Senadeera
Vuong Le
S. Coghlan
33
112
0
10 Dec 2020
Cross-Loss Influence Functions to Explain Deep Network Representations
Andrew Silva
Rohit Chopra
Matthew C. Gombolay
TDI
23
15
0
03 Dec 2020
Survey of XAI in digital pathology
Milda Pocevičiūtė
Gabriel Eilertsen
Claes Lundström
14
56
0
14 Aug 2020
A Conceptual Framework for Externally-influenced Agents: An Assisted Reinforcement Learning Review
Adam Bignold
Francisco Cruz
Matthew E. Taylor
Tim Brys
Richard Dazeley
Peter Vamplew
Cameron Foale
20
28
0
03 Jul 2020
Improving Workflow Integration with xPath: Design and Evaluation of a Human-AI Diagnosis System in Pathology
H. Gu
Yuan Liang
Yifan Xu
Christopher Kazu Williams
S. Magaki
...
Wenzhong Yan
X. R. Zhang
Yang Li
Mohammad Haeri
Xiang Ánthony' Chen
40
29
0
23 Jun 2020
Opportunities and Challenges in Explainable Artificial Intelligence (XAI): A Survey
Arun Das
P. Rad
XAI
42
593
0
16 Jun 2020
Ground Truth Evaluation of Neural Network Explanations with CLEVR-XAI
L. Arras
Ahmed Osman
Wojciech Samek
XAI
AAML
21
150
0
16 Mar 2020
Explainable artificial intelligence model to predict acute critical illness from electronic health records
S. Lauritsen
Mads Kristensen
Mathias Vassard Olsen
Morten Skaarup Larsen
K. M. Lauritsen
Marianne Johansson Jørgensen
Jeppe Lange
B. Thiesson
21
298
0
03 Dec 2019
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
257
3,698
0
28 Feb 2017
A Survey on Deep Learning in Medical Image Analysis
G. Litjens
Thijs Kooi
B. Bejnordi
A. Setio
F. Ciompi
Mohsen Ghafoorian
Jeroen van der Laak
Bram van Ginneken
C. I. Sánchez
OOD
349
10,639
0
19 Feb 2017
1