ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.09007
  4. Cited By
Interestingness Elements for Explainable Reinforcement Learning:
  Understanding Agents' Capabilities and Limitations

Interestingness Elements for Explainable Reinforcement Learning: Understanding Agents' Capabilities and Limitations

19 December 2019
Pedro Sequeira
Melinda Gervasio
ArXivPDFHTML

Papers citing "Interestingness Elements for Explainable Reinforcement Learning: Understanding Agents' Capabilities and Limitations"

14 / 14 papers shown
Title
ASQ-IT: Interactive Explanations for Reinforcement-Learning Agents
ASQ-IT: Interactive Explanations for Reinforcement-Learning Agents
Yotam Amitai
Guy Avni
Ofra Amir
69
3
0
24 Jan 2023
Explainability in Deep Reinforcement Learning
Explainability in Deep Reinforcement Learning
Alexandre Heuillet
Fabien Couthouis
Natalia Díaz Rodríguez
XAI
137
281
0
15 Aug 2020
Exploring Computational User Models for Agent Policy Summarization
Exploring Computational User Models for Agent Policy Summarization
Isaac Lage
Daphna Lifschitz
Finale Doshi-Velez
Ofra Amir
LLMAG
51
76
0
30 May 2019
Explainable Reinforcement Learning Through a Causal Lens
Explainable Reinforcement Learning Through a Causal Lens
Prashan Madumal
Tim Miller
L. Sonenberg
F. Vetere
CML
87
359
0
27 May 2019
Learning Finite State Representations of Recurrent Policy Networks
Learning Finite State Representations of Recurrent Policy Networks
Anurag Koul
S. Greydanus
Alan Fern
41
88
0
29 Nov 2018
Learning Latent Dynamics for Planning from Pixels
Learning Latent Dynamics for Planning from Pixels
Danijar Hafner
Timothy Lillicrap
Ian S. Fischer
Ruben Villegas
David R Ha
Honglak Lee
James Davidson
BDL
84
1,430
0
12 Nov 2018
Establishing Appropriate Trust via Critical States
Establishing Appropriate Trust via Critical States
Sandy H. Huang
Kush S. Bhatia
Pieter Abbeel
Anca Dragan
OffRL
57
110
0
18 Oct 2018
Contrastive Explanations for Reinforcement Learning in terms of Expected
  Consequences
Contrastive Explanations for Reinforcement Learning in terms of Expected Consequences
J. V. D. Waa
J. Diggelen
K. Bosch
Mark Antonius Neerincx
OffRL
51
108
0
23 Jul 2018
GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training
GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training
S. Akçay
Amir Atapour-Abarghouei
T. Breckon
GAN
73
1,387
0
17 May 2018
World Models
World Models
David R Ha
Jürgen Schmidhuber
SyDa
113
1,079
0
27 Mar 2018
Visualizing and Understanding Atari Agents
Visualizing and Understanding Atari Agents
S. Greydanus
Anurag Koul
Jonathan Dodge
Alan Fern
FAtt
100
346
0
31 Oct 2017
Explanation in Artificial Intelligence: Insights from the Social
  Sciences
Explanation in Artificial Intelligence: Insights from the Social Sciences
Tim Miller
XAI
236
4,249
0
22 Jun 2017
Enabling Robots to Communicate their Objectives
Enabling Robots to Communicate their Objectives
Sandy H. Huang
David Held
Pieter Abbeel
Anca Dragan
48
161
0
11 Feb 2017
Graying the black box: Understanding DQNs
Graying the black box: Understanding DQNs
Tom Zahavy
Nir Ben-Zrihem
Shie Mannor
79
263
0
08 Feb 2016
1