ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.08294
  4. Cited By
Lower Memory Oblivious (Tensor) Subspace Embeddings with Fewer Random
  Bits: Modewise Methods for Least Squares

Lower Memory Oblivious (Tensor) Subspace Embeddings with Fewer Random Bits: Modewise Methods for Least Squares

17 December 2019
M. Iwen
Deanna Needell
E. Rebrova
A. Zare
ArXivPDFHTML

Papers citing "Lower Memory Oblivious (Tensor) Subspace Embeddings with Fewer Random Bits: Modewise Methods for Least Squares"

4 / 4 papers shown
Title
Importance Sampling for Nonlinear Models
Importance Sampling for Nonlinear Models
Prakash Palanivelu Rajmohan
Fred Roosta
7
0
0
18 May 2025
Causal Deep Learning
Causal Deep Learning
M. Alex O. Vasilescu
CML
65
2
1
03 Jan 2025
On Outer Bi-Lipschitz Extensions of Linear Johnson-Lindenstrauss
  Embeddings of Low-Dimensional Submanifolds of $\mathbb{R}^N$
On Outer Bi-Lipschitz Extensions of Linear Johnson-Lindenstrauss Embeddings of Low-Dimensional Submanifolds of RN\mathbb{R}^NRN
M. Iwen
M. Roach
10
1
0
07 Jun 2022
More Efficient Sampling for Tensor Decomposition With Worst-Case
  Guarantees
More Efficient Sampling for Tensor Decomposition With Worst-Case Guarantees
Osman Asif Malik
36
14
0
14 Oct 2021
1