Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.07743
Cited By
A hierarchical approach to deep learning and its application to tomographic reconstruction
16 December 2019
Lin Fu
B. D. Man
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A hierarchical approach to deep learning and its application to tomographic reconstruction"
9 / 9 papers shown
Title
Low Dose CT Image Denoising Using a Generative Adversarial Network with Wasserstein Distance and Perceptual Loss
Qingsong Yang
Pingkun Yan
Yanbo Zhang
Hengyong Yu
Yongyi Shi
X. Mou
Mannudeep K. Kalra
Ge Wang
GAN
MedIm
58
1,193
0
03 Aug 2017
A Cascaded Convolutional Neural Network for X-ray Low-dose CT Image Denoising
Dufan Wu
Kyungsang Kim
Xiaofeng Liu
Quanzheng Li
MedIm
OOD
74
65
0
11 May 2017
Image reconstruction by domain transform manifold learning
Bo Zhu
Jeremiah Zhe Liu
Bruce Rosen
Matthew S. Rosen
77
1,525
0
28 Apr 2017
Learning a Variational Network for Reconstruction of Accelerated MRI Data
Kerstin Hammernik
Teresa Klatzer
Erich Kobler
M. Recht
D. Sodickson
Thomas Pock
Florian Knoll
43
1,535
0
03 Apr 2017
Deep Convolutional Neural Network for Inverse Problems in Imaging
Kyong Hwan Jin
Michael T. McCann
Emmanuel Froustey
M. Unser
42
2,116
0
11 Nov 2016
A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction
Eunhee Kang
Junhong Min
J. C. Ye
OOD
MedIm
50
763
0
31 Oct 2016
A Perspective on Deep Imaging
Ge Wang
OOD
37
391
0
10 Sep 2016
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
775
15,718
0
02 Nov 2015
Rich feature hierarchies for accurate object detection and semantic segmentation
Ross B. Girshick
Jeff Donahue
Trevor Darrell
Jitendra Malik
ObjD
224
26,122
0
11 Nov 2013
1