Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.05699
Cited By
What it Thinks is Important is Important: Robustness Transfers through Input Gradients
11 December 2019
Alvin Chan
Yi Tay
Yew-Soon Ong
AAML
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"What it Thinks is Important is Important: Robustness Transfers through Input Gradients"
15 / 15 papers shown
Title
Indirect Gradient Matching for Adversarial Robust Distillation
Hongsin Lee
Seungju Cho
Changick Kim
AAML
FedML
53
2
0
06 Dec 2023
Releasing Inequality Phenomena in
L
∞
L_{\infty}
L
∞
-Adversarial Training via Input Gradient Distillation
Junxi Chen
Junhao Dong
Xiaohua Xie
AAML
20
0
0
16 May 2023
Understanding Zero-Shot Adversarial Robustness for Large-Scale Models
Chengzhi Mao
Scott Geng
Junfeng Yang
Xin Eric Wang
Carl Vondrick
VLM
44
59
0
14 Dec 2022
Rethinking the Number of Shots in Robust Model-Agnostic Meta-Learning
Xiaoyue Duan
Guoliang Kang
Runqi Wang
Shumin Han
Shenjun Xue
Tian Wang
Baochang Zhang
29
2
0
28 Nov 2022
Accelerating Certified Robustness Training via Knowledge Transfer
Pratik Vaishnavi
Kevin Eykholt
Amir Rahmati
24
7
0
25 Oct 2022
Inducing Data Amplification Using Auxiliary Datasets in Adversarial Training
Saehyung Lee
Hyungyu Lee
AAML
29
2
0
27 Sep 2022
Queried Unlabeled Data Improves and Robustifies Class-Incremental Learning
Tianlong Chen
Sijia Liu
Shiyu Chang
Lisa Amini
Zhangyang Wang
CLL
26
4
0
15 Jun 2022
How Does Frequency Bias Affect the Robustness of Neural Image Classifiers against Common Corruption and Adversarial Perturbations?
Alvin Chan
Yew-Soon Ong
Clement Tan
AAML
24
13
0
09 May 2022
Does Robustness on ImageNet Transfer to Downstream Tasks?
Yutaro Yamada
Mayu Otani
OOD
32
27
0
08 Apr 2022
MixACM: Mixup-Based Robustness Transfer via Distillation of Activated Channel Maps
Muhammad Awais
Fengwei Zhou
Chuanlong Xie
Jiawei Li
Sung-Ho Bae
Zhenguo Li
AAML
40
17
0
09 Nov 2021
Simple Post-Training Robustness Using Test Time Augmentations and Random Forest
Gilad Cohen
Raja Giryes
AAML
35
4
0
16 Sep 2021
Adversarial Robustness for Unsupervised Domain Adaptation
Muhammad Awais
Fengwei Zhou
Hang Xu
Lanqing Hong
Ping Luo
Sung-Ho Bae
Zhenguo Li
20
39
0
02 Sep 2021
On Fast Adversarial Robustness Adaptation in Model-Agnostic Meta-Learning
Ren Wang
Kaidi Xu
Sijia Liu
Pin-Yu Chen
Tsui-Wei Weng
Chuang Gan
Meng Wang
AAML
21
46
0
20 Feb 2021
KeepAugment: A Simple Information-Preserving Data Augmentation Approach
Chengyue Gong
Dilin Wang
Meng Li
Vikas Chandra
Qiang Liu
33
113
0
23 Nov 2020
Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
29
48
0
19 Oct 2020
1