Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.05459
Cited By
Deep Relevance Regularization: Interpretable and Robust Tumor Typing of Imaging Mass Spectrometry Data
10 December 2019
Christian Etmann
Maximilian Schmidt
Jens Behrmann
T. Boskamp
Lena Hauberg-Lotte
Annette Peter
R. Casadonte
J. Kriegsmann
Peter Maass
OOD
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Deep Relevance Regularization: Interpretable and Robust Tumor Typing of Imaging Mass Spectrometry Data"
17 / 17 papers shown
Title
Interpretations are useful: penalizing explanations to align neural networks with prior knowledge
Laura Rieger
Chandan Singh
W. James Murdoch
Bin Yu
FAtt
96
215
0
30 Sep 2019
A Forward-Backward Approach for Visualizing Information Flow in Deep Networks
Aditya Balu
THANH VAN NGUYEN
Apurva Kokate
Chinmay Hegde
Soumik Sarkar
FAtt
31
9
0
16 Nov 2017
Towards better understanding of gradient-based attribution methods for Deep Neural Networks
Marco Ancona
Enea Ceolini
Cengiz Öztireli
Markus Gross
FAtt
68
147
0
16 Nov 2017
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
293
2,267
0
24 Jun 2017
Deep Learning for Tumor Classification in Imaging Mass Spectrometry
Jens Behrmann
Christian Etmann
T. Boskamp
R. Casadonte
J. Kriegsmann
Peter Maass
76
104
0
02 May 2017
Right for the Right Reasons: Training Differentiable Models by Constraining their Explanations
A. Ross
M. C. Hughes
Finale Doshi-Velez
FAtt
133
591
0
10 Mar 2017
Visualizing Deep Neural Network Decisions: Prediction Difference Analysis
L. Zintgraf
Taco S. Cohen
T. Adel
Max Welling
FAtt
143
708
0
15 Feb 2017
Investigating the influence of noise and distractors on the interpretation of neural networks
Pieter-Jan Kindermans
Kristof T. Schütt
K. Müller
Sven Dähne
FAtt
74
125
0
22 Nov 2016
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
325
20,110
0
07 Oct 2016
Top-down Neural Attention by Excitation Backprop
Jianming Zhang
Zhe Lin
Jonathan Brandt
Xiaohui Shen
Stan Sclaroff
92
948
0
01 Aug 2016
Not Just a Black Box: Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Shcherbina
A. Kundaje
FAtt
87
791
0
05 May 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,510
0
10 Dec 2015
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
344
18,654
0
06 Feb 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,364
0
22 Dec 2014
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
254
4,681
0
21 Dec 2014
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
314
7,317
0
20 Dec 2013
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
595
15,904
0
12 Nov 2013
1