ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.05459
  4. Cited By
Deep Relevance Regularization: Interpretable and Robust Tumor Typing of
  Imaging Mass Spectrometry Data

Deep Relevance Regularization: Interpretable and Robust Tumor Typing of Imaging Mass Spectrometry Data

10 December 2019
Christian Etmann
Maximilian Schmidt
Jens Behrmann
T. Boskamp
Lena Hauberg-Lotte
Annette Peter
R. Casadonte
J. Kriegsmann
Peter Maass
    OOD
ArXiv (abs)PDFHTML

Papers citing "Deep Relevance Regularization: Interpretable and Robust Tumor Typing of Imaging Mass Spectrometry Data"

17 / 17 papers shown
Title
Interpretations are useful: penalizing explanations to align neural
  networks with prior knowledge
Interpretations are useful: penalizing explanations to align neural networks with prior knowledge
Laura Rieger
Chandan Singh
W. James Murdoch
Bin Yu
FAtt
96
215
0
30 Sep 2019
A Forward-Backward Approach for Visualizing Information Flow in Deep
  Networks
A Forward-Backward Approach for Visualizing Information Flow in Deep Networks
Aditya Balu
THANH VAN NGUYEN
Apurva Kokate
Chinmay Hegde
Soumik Sarkar
FAtt
31
9
0
16 Nov 2017
Towards better understanding of gradient-based attribution methods for
  Deep Neural Networks
Towards better understanding of gradient-based attribution methods for Deep Neural Networks
Marco Ancona
Enea Ceolini
Cengiz Öztireli
Markus Gross
FAtt
68
147
0
16 Nov 2017
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
293
2,267
0
24 Jun 2017
Deep Learning for Tumor Classification in Imaging Mass Spectrometry
Deep Learning for Tumor Classification in Imaging Mass Spectrometry
Jens Behrmann
Christian Etmann
T. Boskamp
R. Casadonte
J. Kriegsmann
Peter Maass
76
104
0
02 May 2017
Right for the Right Reasons: Training Differentiable Models by
  Constraining their Explanations
Right for the Right Reasons: Training Differentiable Models by Constraining their Explanations
A. Ross
M. C. Hughes
Finale Doshi-Velez
FAtt
133
591
0
10 Mar 2017
Visualizing Deep Neural Network Decisions: Prediction Difference
  Analysis
Visualizing Deep Neural Network Decisions: Prediction Difference Analysis
L. Zintgraf
Taco S. Cohen
T. Adel
Max Welling
FAtt
143
708
0
15 Feb 2017
Investigating the influence of noise and distractors on the
  interpretation of neural networks
Investigating the influence of noise and distractors on the interpretation of neural networks
Pieter-Jan Kindermans
Kristof T. Schütt
K. Müller
Sven Dähne
FAtt
74
125
0
22 Nov 2016
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
  Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
325
20,110
0
07 Oct 2016
Top-down Neural Attention by Excitation Backprop
Top-down Neural Attention by Excitation Backprop
Jianming Zhang
Zhe Lin
Jonathan Brandt
Xiaohui Shen
Stan Sclaroff
92
948
0
01 Aug 2016
Not Just a Black Box: Learning Important Features Through Propagating
  Activation Differences
Not Just a Black Box: Learning Important Features Through Propagating Activation Differences
Avanti Shrikumar
Peyton Greenside
A. Shcherbina
A. Kundaje
FAtt
87
791
0
05 May 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,510
0
10 Dec 2015
Delving Deep into Rectifiers: Surpassing Human-Level Performance on
  ImageNet Classification
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
344
18,654
0
06 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,364
0
22 Dec 2014
Striving for Simplicity: The All Convolutional Net
Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
FAtt
254
4,681
0
21 Dec 2014
Deep Inside Convolutional Networks: Visualising Image Classification
  Models and Saliency Maps
Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
FAtt
314
7,317
0
20 Dec 2013
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAttSSL
595
15,904
0
12 Nov 2013
1