Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.05239
Cited By
Efficacy of Modern Neuro-Evolutionary Strategies for Continuous Control Optimization
11 December 2019
Paolo Pagliuca
Nicola Milano
S. Nolfi
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Efficacy of Modern Neuro-Evolutionary Strategies for Continuous Control Optimization"
10 / 10 papers shown
Title
Utilizing Novelty-based Evolution Strategies to Train Transformers in Reinforcement Learning
Matyáš Lorenc
OffRL
75
0
0
10 Feb 2025
Brain-inspired learning in artificial neural networks: a review
Samuel Schmidgall
Jascha Achterberg
Thomas Miconi
Louis Kirsch
Rojin Ziaei
S. P. Hajiseyedrazi
Jason K. Eshraghian
38
52
0
18 May 2023
Training Diverse High-Dimensional Controllers by Scaling Covariance Matrix Adaptation MAP-Annealing
Bryon Tjanaka
Matthew C. Fontaine
David H. Lee
Aniruddha Kalkar
Stefanos Nikolaidis
68
8
0
06 Oct 2022
The Role of Morphological Variation in Evolutionary Robotics: Maximizing Performance and Robustness
J. Carvalho
S. Nolfi
21
8
0
04 Aug 2022
Qualitative Differences Between Evolutionary Strategies and Reinforcement Learning Methods for Control of Autonomous Agents
Nicola Milano
S. Nolfi
20
0
0
16 May 2022
Approximating Gradients for Differentiable Quality Diversity in Reinforcement Learning
Bryon Tjanaka
Matthew C. Fontaine
Julian Togelius
Stefanos Nikolaidis
38
50
0
08 Feb 2022
Deep Reinforcement Learning Versus Evolution Strategies: A Comparative Survey
Amjad Yousef Majid
Serge Saaybi
Tomas van Rietbergen
Vincent François-Lavet
R. V. Prasad
Chris Verhoeven
OffRL
62
55
0
28 Sep 2021
Automated Curriculum Learning for Embodied Agents: A Neuroevolutionary Approach
Nicola Milano
S. Nolfi
92
10
0
17 Feb 2021
Autonomous Learning of Features for Control: Experiments with Embodied and Situated Agents
Nicola Milano
S. Nolfi
16
0
0
15 Sep 2020
Maximum Mutation Reinforcement Learning for Scalable Control
Karush Suri
Xiaolong Shi
Konstantinos N. Plataniotis
Y. Lawryshyn
25
4
0
24 Jul 2020
1