Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.04977
Cited By
Advances and Open Problems in Federated Learning
10 December 2019
Peter Kairouz
H. B. McMahan
Brendan Avent
A. Bellet
M. Bennis
A. Bhagoji
Keith Bonawitz
Zachary B. Charles
Graham Cormode
Rachel Cummings
Rafael G. L. DÓliveira
Hubert Eichner
S. E. Rouayheb
David Evans
Josh Gardner
Zachary Garrett
Adria Gascon
Badih Ghazi
Phillip B. Gibbons
Marco Gruteser
Zaïd Harchaoui
Chaoyang He
Lie He
Zhouyuan Huo
Ben Hutchinson
Justin Hsu
Martin Jaggi
T. Javidi
Gauri Joshi
M. Khodak
Jakub Konecný
Aleksandra Korolova
F. Koushanfar
Oluwasanmi Koyejo
Tancrède Lepoint
Yang Liu
Prateek Mittal
M. Mohri
Richard Nock
A. Özgür
Rasmus Pagh
Mariana Raykova
Hang Qi
Daniel Ramage
Ramesh Raskar
D. Song
Weikang Song
Sebastian U. Stich
Ziteng Sun
A. Suresh
Florian Tramèr
Praneeth Vepakomma
Jianyu Wang
Li Xiong
Zheng Xu
Qiang Yang
Felix X. Yu
Han Yu
Sen Zhao
FedML
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Advances and Open Problems in Federated Learning"
50 / 193 papers shown
Title
Byzantine-Resilient Secure Federated Learning
Jinhyun So
Başak Güler
A. Avestimehr
FedML
45
239
0
21 Jul 2020
Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization
Jianyu Wang
Qinghua Liu
Hao Liang
Gauri Joshi
H. Vincent Poor
MoMe
FedML
43
1,321
0
15 Jul 2020
Federated Learning and Differential Privacy: Software tools analysis, the Sherpa.ai FL framework and methodological guidelines for preserving data privacy
Nuria Rodríguez Barroso
G. Stipcich
Daniel Jiménez-López
José Antonio Ruiz-Millán
Eugenio Martínez-Cámara
Gerardo González-Seco
M. V. Luzón
M. Veganzones
Francisco Herrera
36
102
0
02 Jul 2020
On the Outsized Importance of Learning Rates in Local Update Methods
Zachary B. Charles
Jakub Konecný
FedML
43
54
0
02 Jul 2020
Mix2FLD: Downlink Federated Learning After Uplink Federated Distillation With Two-Way Mixup
Seungeun Oh
Jihong Park
Eunjeong Jeong
Hyesung Kim
M. Bennis
Seong-Lyun Kim
FedML
49
58
0
17 Jun 2020
Understanding Unintended Memorization in Federated Learning
Om Thakkar
Swaroop Indra Ramaswamy
Rajiv Mathews
Franccoise Beaufays
FedML
35
47
0
12 Jun 2020
Privacy in Deep Learning: A Survey
Fatemehsadat Mirshghallah
Mohammadkazem Taram
Praneeth Vepakomma
Abhishek Singh
Ramesh Raskar
H. Esmaeilzadeh
FedML
60
137
0
25 Apr 2020
Towards Non-I.I.D. and Invisible Data with FedNAS: Federated Deep Learning via Neural Architecture Search
Chaoyang He
M. Annavaram
A. Avestimehr
OOD
FedML
42
87
0
18 Apr 2020
MiLeNAS: Efficient Neural Architecture Search via Mixed-Level Reformulation
Chaoyang He
Haishan Ye
Li Shen
Tong Zhang
49
129
0
27 Mar 2020
What is the State of Neural Network Pruning?
Davis W. Blalock
Jose Javier Gonzalez Ortiz
Jonathan Frankle
John Guttag
243
1,045
0
06 Mar 2020
Decentralized gradient methods: does topology matter?
Giovanni Neglia
Chuan Xu
Don Towsley
G. Calbi
38
50
0
28 Feb 2020
Is Local SGD Better than Minibatch SGD?
Blake E. Woodworth
Kumar Kshitij Patel
Sebastian U. Stich
Zhen Dai
Brian Bullins
H. B. McMahan
Ohad Shamir
Nathan Srebro
FedML
52
254
0
18 Feb 2020
Salvaging Federated Learning by Local Adaptation
Tao Yu
Eugene Bagdasaryan
Vitaly Shmatikov
FedML
41
262
0
12 Feb 2020
Robust Aggregation for Federated Learning
Krishna Pillutla
Sham Kakade
Zaïd Harchaoui
FedML
71
644
0
31 Dec 2019
The power of synergy in differential privacy: Combining a small curator with local randomizers
A. Beimel
Aleksandra Korolova
Kobbi Nissim
Or Sheffet
Uri Stemmer
50
14
0
18 Dec 2019
Can You Really Backdoor Federated Learning?
Ziteng Sun
Peter Kairouz
A. Suresh
H. B. McMahan
FedML
58
565
0
18 Nov 2019
Secure Evaluation of Quantized Neural Networks
Anders Dalskov
Daniel E. Escudero
Marcel Keller
54
138
0
28 Oct 2019
Federated Evaluation of On-device Personalization
Kangkang Wang
Rajiv Mathews
Chloé Kiddon
Hubert Eichner
F. Beaufays
Daniel Ramage
FedML
43
283
0
22 Oct 2019
SCAFFOLD: Stochastic Controlled Averaging for Federated Learning
Sai Praneeth Karimireddy
Satyen Kale
M. Mohri
Sashank J. Reddi
Sebastian U. Stich
A. Suresh
FedML
47
345
0
14 Oct 2019
The Non-IID Data Quagmire of Decentralized Machine Learning
Kevin Hsieh
Amar Phanishayee
O. Mutlu
Phillip B. Gibbons
119
563
0
01 Oct 2019
HEAX: An Architecture for Computing on Encrypted Data
M. Riazi
Kim Laine
Blake Pelton
Wei Dai
48
221
0
20 Sep 2019
Detailed comparison of communication efficiency of split learning and federated learning
Abhishek Singh
Praneeth Vepakomma
O. Gupta
Ramesh Raskar
FedML
43
188
0
18 Sep 2019
Measuring the Effects of Non-Identical Data Distribution for Federated Visual Classification
T. Hsu
Qi
Matthew Brown
FedML
108
1,128
0
13 Sep 2019
On the Upload versus Download Cost for Secure and Private Matrix Multiplication
Wei-Ting Chang
Ravi Tandon
FedML
32
42
0
25 Jun 2019
Scalable and Differentially Private Distributed Aggregation in the Shuffled Model
Badih Ghazi
Rasmus Pagh
A. Velingker
FedML
37
98
0
19 Jun 2019
Federated Learning for Emoji Prediction in a Mobile Keyboard
Swaroop Indra Ramaswamy
Rajiv Mathews
Kanishka Rao
Franccoise Beaufays
FedML
44
311
0
11 Jun 2019
PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization
Thijs Vogels
Sai Praneeth Karimireddy
Martin Jaggi
56
320
0
31 May 2019
Differential Privacy Has Disparate Impact on Model Accuracy
Eugene Bagdasaryan
Vitaly Shmatikov
78
474
0
28 May 2019
Decentralized Bayesian Learning over Graphs
Anusha Lalitha
Xinghan Wang
O. Kilinc
Y. Lu
T. Javidi
F. Koushanfar
FedML
48
25
0
24 May 2019
MATCHA: Speeding Up Decentralized SGD via Matching Decomposition Sampling
Jianyu Wang
Anit Kumar Sahu
Zhouyi Yang
Gauri Joshi
S. Kar
48
162
0
23 May 2019
Incentive Design for Efficient Federated Learning in Mobile Networks: A Contract Theory Approach
Jiawen Kang
Zehui Xiong
Dusit Niyato
Han Yu
Ying-Chang Liang
Dong In Kim
FedML
47
213
0
16 May 2019
DoubleSqueeze: Parallel Stochastic Gradient Descent with Double-Pass Error-Compensated Compression
Hanlin Tang
Xiangru Lian
Chen Yu
Tong Zhang
Ji Liu
33
217
0
15 May 2019
Adversarial Training for Free!
Ali Shafahi
Mahyar Najibi
Amin Ghiasi
Zheng Xu
John P. Dickerson
Christoph Studer
L. Davis
Gavin Taylor
Tom Goldstein
AAML
107
1,238
0
29 Apr 2019
Robust and Communication-Efficient Federated Learning from Non-IID Data
Felix Sattler
Simon Wiedemann
K. Müller
Wojciech Samek
FedML
44
1,343
0
07 Mar 2019
Federated Heavy Hitters Discovery with Differential Privacy
Wennan Zhu
Peter Kairouz
H. B. McMahan
Haicheng Sun
Wei Li
FedML
52
108
0
22 Feb 2019
Wasserstein Adversarial Examples via Projected Sinkhorn Iterations
Eric Wong
Frank R. Schmidt
J. Zico Kolter
AAML
62
211
0
21 Feb 2019
Federated Machine Learning: Concept and Applications
Qiang Yang
Yang Liu
Tianjian Chen
Yongxin Tong
FedML
52
2,302
0
13 Feb 2019
Towards Federated Learning at Scale: System Design
Keith Bonawitz
Hubert Eichner
W. Grieskamp
Dzmitry Huba
A. Ingerman
...
H. B. McMahan
Timon Van Overveldt
David Petrou
Daniel Ramage
Jason Roselander
FedML
88
2,652
0
04 Feb 2019
Agnostic Federated Learning
M. Mohri
Gary Sivek
A. Suresh
FedML
88
928
0
01 Feb 2019
Peer-to-peer Federated Learning on Graphs
Anusha Lalitha
O. Kilinc
T. Javidi
F. Koushanfar
OOD
FedML
93
185
0
31 Jan 2019
SNAS: Stochastic Neural Architecture Search
Sirui Xie
Hehui Zheng
Chunxiao Liu
Liang Lin
59
932
0
24 Dec 2018
Feature Denoising for Improving Adversarial Robustness
Cihang Xie
Yuxin Wu
Laurens van der Maaten
Alan Yuille
Kaiming He
78
907
0
09 Dec 2018
LEAF: A Benchmark for Federated Settings
S. Caldas
Sai Meher Karthik Duddu
Peter Wu
Tian Li
Jakub Konecný
H. B. McMahan
Virginia Smith
Ameet Talwalkar
FedML
104
1,410
0
03 Dec 2018
Split learning for health: Distributed deep learning without sharing raw patient data
Praneeth Vepakomma
O. Gupta
Tristan Swedish
Ramesh Raskar
FedML
83
694
0
03 Dec 2018
Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Kunal Talwar
Abhradeep Thakurta
167
423
0
29 Nov 2018
The Power of The Hybrid Model for Mean Estimation
Brendan Avent
Yatharth Dubey
Aleksandra Korolova
65
16
0
29 Nov 2018
Stochastic Gradient Push for Distributed Deep Learning
Mahmoud Assran
Nicolas Loizou
Nicolas Ballas
Michael G. Rabbat
51
342
0
27 Nov 2018
Distributed learning of deep neural network over multiple agents
O. Gupta
Ramesh Raskar
FedML
OOD
44
602
0
14 Oct 2018
Differentially Private Change-Point Detection
Rachel Cummings
Sara Krehbiel
Y. Mei
Rui Tuo
Wanrong Zhang
18
30
0
29 Aug 2018
Cooperative SGD: A unified Framework for the Design and Analysis of Communication-Efficient SGD Algorithms
Jianyu Wang
Gauri Joshi
101
348
0
22 Aug 2018
Previous
1
2
3
4
Next