ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.04216
48
23
v1v2 (latest)

cGANs with Multi-Hinge Loss

9 December 2019
Ilya Kavalerov
W. Czaja
Rama Chellappa
    GANAI4CE
ArXiv (abs)PDFHTMLGithub (1★)
Abstract

We propose a new algorithm to incorporate class conditional information into the discriminator of GANs via a multi-class generalization of the commonly used Hinge loss. Our approach is in contrast to most GAN frameworks in that we train a single classifier for K+1 classes with one loss function, instead of a real/fake discriminator, or a discriminator classifier pair. We show that learning a single good classifier and a single state of the art generator simultaneously is possible in supervised and semi-supervised settings. With our multi-hinge loss modification we were able to improve the state of the art CIFAR10 IS & FID to 9.58 & 6.40, CIFAR100 IS & FID to 14.36 & 13.32, and STL10 IS & FID to 12.16 & 17.44. The code written with PyTorch is available at https://github.com/ilyakava/BigGAN-PyTorch.

View on arXiv
Comments on this paper