46
23
v1v2 (latest)

cGANs with Multi-Hinge Loss

Abstract

We propose a new algorithm to incorporate class conditional information into the critic of GANs via a multi-class generalization of the commonly used Hinge loss that is compatible with both supervised and semi-supervised settings. We study the compromise between training a state of the art generator and an accurate classifier simultaneously, and propose a way to use our algorithm to measure the degree to which a generator and critic are class conditional. We show the trade-off between a generator-critic pair respecting class conditioning inputs and generating the highest quality images. With our multi-hinge loss modification we are able to improve Inception Scores and Frechet Inception Distance on the Imagenet dataset. We make our tensorflow code available at https://github.com/ilyakava/gan.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.