ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.04212
  4. Cited By
Solving Bayesian Inverse Problems via Variational Autoencoders

Solving Bayesian Inverse Problems via Variational Autoencoders

5 December 2019
Hwan Goh
Sheroze Sheriffdeen
J. Wittmer
T. Bui-Thanh
    BDL
ArXivPDFHTML

Papers citing "Solving Bayesian Inverse Problems via Variational Autoencoders"

9 / 9 papers shown
Title
Good Things Come in Pairs: Paired Autoencoders for Inverse Problems
Good Things Come in Pairs: Paired Autoencoders for Inverse Problems
Matthias Chung
Bas Peters
Michael Solomon
34
0
0
10 May 2025
Bayesian Inverse Problems Meet Flow Matching: Efficient and Flexible Inference via Transformers
Bayesian Inverse Problems Meet Flow Matching: Efficient and Flexible Inference via Transformers
Daniil Sherki
Ivan V. Oseledets
Ekaterina A. Muravleva
62
0
0
03 Mar 2025
A Primer on Variational Inference for Physics-Informed Deep Generative Modelling
A Primer on Variational Inference for Physics-Informed Deep Generative Modelling
Alex Glyn-Davies
A. Vadeboncoeur
O. Deniz Akyildiz
Ieva Kazlauskaite
Mark Girolami
PINN
70
0
0
10 Sep 2024
Bi-level Guided Diffusion Models for Zero-Shot Medical Imaging Inverse
  Problems
Bi-level Guided Diffusion Models for Zero-Shot Medical Imaging Inverse Problems
Hossein Askari
Fred Roosta
Hongfu Sun
MedIm
DiffM
38
3
0
04 Apr 2024
An autoencoder compression approach for accelerating large-scale inverse
  problems
An autoencoder compression approach for accelerating large-scale inverse problems
J. Wittmer
Jacob Badger
H. Sundar
T. Bui-Thanh
AI4CE
29
1
0
10 Apr 2023
Quantifying uncertainty for deep learning based forecasting and
  flow-reconstruction using neural architecture search ensembles
Quantifying uncertainty for deep learning based forecasting and flow-reconstruction using neural architecture search ensembles
R. Maulik
Romain Egele
Krishnan Raghavan
Prasanna Balaprakash
UQCV
AI4TS
AI4CE
22
6
0
20 Feb 2023
Randomized Maximum Likelihood via High-Dimensional Bayesian Optimization
Randomized Maximum Likelihood via High-Dimensional Bayesian Optimization
Valentin Breaz
Richard D. Wilkinson
19
0
0
17 Apr 2022
The efficacy and generalizability of conditional GANs for posterior
  inference in physics-based inverse problems
The efficacy and generalizability of conditional GANs for posterior inference in physics-based inverse problems
Deep Ray
Harisankar Ramaswamy
Dhruv V. Patel
Assad A. Oberai
CML
AI4CE
13
21
0
15 Feb 2022
Solution of Physics-based Bayesian Inverse Problems with Deep Generative
  Priors
Solution of Physics-based Bayesian Inverse Problems with Deep Generative Priors
Dhruv V. Patel
Deep Ray
Assad A. Oberai
AI4CE
16
37
0
06 Jul 2021
1