Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.04136
Cited By
Optimism in Reinforcement Learning with Generalized Linear Function Approximation
9 December 2019
Yining Wang
Ruosong Wang
S. Du
A. Krishnamurthy
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Optimism in Reinforcement Learning with Generalized Linear Function Approximation"
34 / 34 papers shown
Title
Incentivize without Bonus: Provably Efficient Model-based Online Multi-agent RL for Markov Games
Tong Yang
Bo Dai
Lin Xiao
Yuejie Chi
OffRL
56
2
0
13 Feb 2025
Provably Efficient Reinforcement Learning with Multinomial Logit Function Approximation
Long-Fei Li
Yu-Jie Zhang
Peng Zhao
Zhi-Hua Zhou
92
4
0
17 Jan 2025
Bellman Unbiasedness: Toward Provably Efficient Distributional Reinforcement Learning with General Value Function Approximation
Taehyun Cho
Seung Han
Kyungjae Lee
Seokhun Ju
Dohyeong Kim
Jungwoo Lee
64
0
0
31 Jul 2024
Bigger, Regularized, Optimistic: scaling for compute and sample-efficient continuous control
Michal Nauman
M. Ostaszewski
Krzysztof Jankowski
Piotr Milo's
Marek Cygan
OffRL
37
16
0
25 May 2024
Horizon-Free Regret for Linear Markov Decision Processes
Zihan Zhang
Jason D. Lee
Yuxin Chen
Simon S. Du
33
3
0
15 Mar 2024
On the Theory of Risk-Aware Agents: Bridging Actor-Critic and Economics
Michal Nauman
Marek Cygan
29
1
0
30 Oct 2023
Does Sparsity Help in Learning Misspecified Linear Bandits?
Jialin Dong
Lin F. Yang
17
1
0
29 Mar 2023
Provably Efficient Reinforcement Learning via Surprise Bound
Hanlin Zhu
Ruosong Wang
Jason D. Lee
OffRL
13
5
0
22 Feb 2023
Reinforcement Learning with Function Approximation: From Linear to Nonlinear
Jihao Long
Jiequn Han
19
5
0
20 Feb 2023
Selective Uncertainty Propagation in Offline RL
Sanath Kumar Krishnamurthy
Shrey Modi
Tanmay Gangwani
S. Katariya
B. Kveton
A. Rangi
OffRL
59
0
0
01 Feb 2023
Multi-Agent Congestion Cost Minimization With Linear Function Approximations
Prashant Trivedi
N. Hemachandra
30
0
0
26 Jan 2023
Nearly Minimax Optimal Reinforcement Learning for Linear Markov Decision Processes
Jiafan He
Heyang Zhao
Dongruo Zhou
Quanquan Gu
OffRL
45
53
0
12 Dec 2022
Distributionally Robust Offline Reinforcement Learning with Linear Function Approximation
Xiaoteng Ma
Zhipeng Liang
Jose H. Blanchet
MingWen Liu
Li Xia
Jiheng Zhang
Qianchuan Zhao
Zhengyuan Zhou
OOD
OffRL
33
22
0
14 Sep 2022
A Provably Efficient Model-Free Posterior Sampling Method for Episodic Reinforcement Learning
Christoph Dann
M. Mohri
Tong Zhang
Julian Zimmert
OffRL
16
32
0
23 Aug 2022
Stabilizing Q-learning with Linear Architectures for Provably Efficient Learning
Andrea Zanette
Martin J. Wainwright
OOD
34
5
0
01 Jun 2022
Provably Efficient Kernelized Q-Learning
Shuang Liu
H. Su
MLT
17
4
0
21 Apr 2022
Near-optimal Offline Reinforcement Learning with Linear Representation: Leveraging Variance Information with Pessimism
Ming Yin
Yaqi Duan
Mengdi Wang
Yu-Xiang Wang
OffRL
32
65
0
11 Mar 2022
Safe Policy Optimization with Local Generalized Linear Function Approximations
Akifumi Wachi
Yunyue Wei
Yanan Sui
OffRL
17
10
0
09 Nov 2021
Perturbational Complexity by Distribution Mismatch: A Systematic Analysis of Reinforcement Learning in Reproducing Kernel Hilbert Space
Jihao Long
Jiequn Han
25
6
0
05 Nov 2021
Adaptive Discretization in Online Reinforcement Learning
Sean R. Sinclair
Siddhartha Banerjee
C. Yu
OffRL
32
15
0
29 Oct 2021
Learning Stochastic Shortest Path with Linear Function Approximation
Steffen Czolbe
Jiafan He
Adrian V. Dalca
Quanquan Gu
33
30
0
25 Oct 2021
Towards General Function Approximation in Zero-Sum Markov Games
Baihe Huang
Jason D. Lee
Zhaoran Wang
Zhuoran Yang
25
47
0
30 Jul 2021
Randomized Exploration for Reinforcement Learning with General Value Function Approximation
Haque Ishfaq
Qiwen Cui
V. Nguyen
Alex Ayoub
Zhuoran Yang
Zhaoran Wang
Doina Precup
Lin F. Yang
15
43
0
15 Jun 2021
Sample-Efficient Reinforcement Learning Is Feasible for Linearly Realizable MDPs with Limited Revisiting
Gen Li
Yuxin Chen
Yuejie Chi
Yuantao Gu
Yuting Wei
OffRL
19
28
0
17 May 2021
Cautiously Optimistic Policy Optimization and Exploration with Linear Function Approximation
Andrea Zanette
Ching-An Cheng
Alekh Agarwal
32
52
0
24 Mar 2021
An Exponential Lower Bound for Linearly-Realizable MDPs with Constant Suboptimality Gap
Yuanhao Wang
Ruosong Wang
Sham Kakade
OffRL
35
43
0
23 Mar 2021
Bellman Eluder Dimension: New Rich Classes of RL Problems, and Sample-Efficient Algorithms
Chi Jin
Qinghua Liu
Sobhan Miryoosefi
OffRL
26
212
0
01 Feb 2021
Improved Variance-Aware Confidence Sets for Linear Bandits and Linear Mixture MDP
Zihan Zhang
Jiaqi Yang
Xiangyang Ji
S. Du
63
36
0
29 Jan 2021
Regret Bounds for Adaptive Nonlinear Control
Nicholas M. Boffi
Stephen Tu
Jean-Jacques E. Slotine
41
47
0
26 Nov 2020
On Function Approximation in Reinforcement Learning: Optimism in the Face of Large State Spaces
Zhuoran Yang
Chi Jin
Zhaoran Wang
Mengdi Wang
Michael I. Jordan
20
18
0
09 Nov 2020
Provably Efficient Reinforcement Learning for Discounted MDPs with Feature Mapping
Dongruo Zhou
Jiafan He
Quanquan Gu
27
133
0
23 Jun 2020
FLAMBE: Structural Complexity and Representation Learning of Low Rank MDPs
Alekh Agarwal
Sham Kakade
A. Krishnamurthy
Wen Sun
OffRL
32
221
0
18 Jun 2020
Reinforcement Learning with General Value Function Approximation: Provably Efficient Approach via Bounded Eluder Dimension
Ruosong Wang
Ruslan Salakhutdinov
Lin F. Yang
18
55
0
21 May 2020
Learning Zero-Sum Simultaneous-Move Markov Games Using Function Approximation and Correlated Equilibrium
Qiaomin Xie
Yudong Chen
Zhaoran Wang
Zhuoran Yang
20
124
0
17 Feb 2020
1