Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1912.01730
Cited By
Distance-Based Learning from Errors for Confidence Calibration
3 December 2019
Chen Xing
Sercan O. Arik
Zizhao Zhang
Tomas Pfister
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Distance-Based Learning from Errors for Confidence Calibration"
22 / 22 papers shown
Title
Bayesian Inference for Large Scale Image Classification
Jonathan Heek
Nal Kalchbrenner
UQCV
BDL
97
33
0
09 Aug 2019
When Does Label Smoothing Help?
Rafael Müller
Simon Kornblith
Geoffrey E. Hinton
UQCV
195
1,945
0
06 Jun 2019
Modeling Uncertainty by Learning a Hierarchy of Deep Neural Connections
R. Y. Rohekar
Yaniv Gurwicz
Shami Nisimov
Gal Novik
BDL
UQCV
107
13
0
30 May 2019
On Mixup Training: Improved Calibration and Predictive Uncertainty for Deep Neural Networks
S. Thulasidasan
Gopinath Chennupati
J. Bilmes
Tanmoy Bhattacharya
S. Michalak
UQCV
68
542
0
27 May 2019
SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition
Daniel S. Park
William Chan
Yu Zhang
Chung-Cheng Chiu
Barret Zoph
E. D. Cubuk
Quoc V. Le
VLM
177
3,461
0
18 Apr 2019
Adaptive Cross-Modal Few-Shot Learning
Chen Xing
Negar Rostamzadeh
Boris N. Oreshkin
Pedro H. O. Pinheiro
132
272
0
19 Feb 2019
To Trust Or Not To Trust A Classifier
Heinrich Jiang
Been Kim
Melody Y. Guan
Maya R. Gupta
UQCV
176
472
0
30 May 2018
TADAM: Task dependent adaptive metric for improved few-shot learning
Boris N. Oreshkin
Pau Rodríguez López
Alexandre Lacoste
96
1,313
0
23 May 2018
Exploring the Limits of Weakly Supervised Pretraining
D. Mahajan
Ross B. Girshick
Vignesh Ramanathan
Kaiming He
Manohar Paluri
Yixuan Li
Ashwin R. Bharambe
Laurens van der Maaten
VLM
185
1,367
0
02 May 2018
The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation
Miles Brundage
S. Avin
Jack Clark
H. Toner
P. Eckersley
...
Owain Evans
Michael Page
Joanna J. Bryson
Roman V. Yampolskiy
Dario Amodei
74
707
0
20 Feb 2018
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
278
9,764
0
25 Oct 2017
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
299
5,833
0
14 Jun 2017
Prototypical Networks for Few-shot Learning
Jake C. Snell
Kevin Swersky
R. Zemel
300
8,134
0
15 Mar 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
831
5,821
0
05 Dec 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,020
0
10 Dec 2015
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
883
27,358
0
02 Dec 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
821
9,318
0
06 Jun 2015
Weight Uncertainty in Neural Networks
Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
UQCV
BDL
185
1,887
0
20 May 2015
In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning
Behnam Neyshabur
Ryota Tomioka
Nathan Srebro
AI4CE
92
658
0
20 Dec 2014
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Anh Totti Nguyen
J. Yosinski
Jeff Clune
AAML
161
3,271
0
05 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.6K
100,348
0
04 Sep 2014
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
452
16,933
0
20 Dec 2013
1