ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.01188
  4. Cited By
Adaptive Online Planning for Continual Lifelong Learning

Adaptive Online Planning for Continual Lifelong Learning

3 December 2019
Kevin Lu
Igor Mordatch
Pieter Abbeel
    OffRL
    OnRL
    CLL
ArXivPDFHTML

Papers citing "Adaptive Online Planning for Continual Lifelong Learning"

19 / 19 papers shown
Title
Static and Dynamic Values of Computation in MCTS
Static and Dynamic Values of Computation in MCTS
Eren Sezener
Peter Dayan
54
5
0
11 Feb 2020
Exploring Model-based Planning with Policy Networks
Exploring Model-based Planning with Policy Networks
Tingwu Wang
Jimmy Ba
71
148
0
20 Jun 2019
When to Trust Your Model: Model-Based Policy Optimization
When to Trust Your Model: Model-Based Policy Optimization
Michael Janner
Justin Fu
Marvin Zhang
Sergey Levine
OffRL
83
948
0
19 Jun 2019
Three scenarios for continual learning
Three scenarios for continual learning
Gido M. van de Ven
A. Tolias
CLL
78
889
0
15 Apr 2019
Experience Replay for Continual Learning
Experience Replay for Continual Learning
David Rolnick
Arun Ahuja
Jonathan Richard Schwarz
Timothy Lillicrap
Greg Wayne
CLL
112
1,156
0
28 Nov 2018
Plan Online, Learn Offline: Efficient Learning and Exploration via
  Model-Based Control
Plan Online, Learn Offline: Efficient Learning and Exploration via Model-Based Control
Kendall Lowrey
Aravind Rajeswaran
Sham Kakade
G. Haro
Igor Mordatch
OffRL
61
225
0
05 Nov 2018
Model-Based Reinforcement Learning via Meta-Policy Optimization
Model-Based Reinforcement Learning via Meta-Policy Optimization
I. Clavera
Jonas Rothfuss
John Schulman
Yasuhiro Fujita
Tamim Asfour
Pieter Abbeel
66
226
0
14 Sep 2018
Progress & Compress: A scalable framework for continual learning
Progress & Compress: A scalable framework for continual learning
Jonathan Richard Schwarz
Jelena Luketina
Wojciech M. Czarnecki
A. Grabska-Barwinska
Yee Whye Teh
Razvan Pascanu
R. Hadsell
CLL
108
886
0
16 May 2018
Model-Ensemble Trust-Region Policy Optimization
Model-Ensemble Trust-Region Policy Optimization
Thanard Kurutach
I. Clavera
Yan Duan
Aviv Tamar
Pieter Abbeel
65
451
0
28 Feb 2018
Learning to Search with MCTSnets
Learning to Search with MCTSnets
A. Guez
T. Weber
Ioannis Antonoglou
Karen Simonyan
Oriol Vinyals
Daan Wierstra
Rémi Munos
David Silver
63
88
0
13 Feb 2018
Learning Complex Dexterous Manipulation with Deep Reinforcement Learning
  and Demonstrations
Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations
Aravind Rajeswaran
Vikash Kumar
Abhishek Gupta
Giulia Vezzani
John Schulman
E. Todorov
Sergey Levine
126
1,093
0
28 Sep 2017
Thinking Fast and Slow with Deep Learning and Tree Search
Thinking Fast and Slow with Deep Learning and Tree Search
Thomas W. Anthony
Zheng Tian
David Barber
87
395
0
23 May 2017
Towards Generalization and Simplicity in Continuous Control
Towards Generalization and Simplicity in Continuous Control
Aravind Rajeswaran
Kendall Lowrey
E. Todorov
Sham Kakade
OffRL
84
276
0
08 Mar 2017
Overcoming catastrophic forgetting in neural networks
Overcoming catastrophic forgetting in neural networks
J. Kirkpatrick
Razvan Pascanu
Neil C. Rabinowitz
J. Veness
Guillaume Desjardins
...
A. Grabska-Barwinska
Demis Hassabis
Claudia Clopath
D. Kumaran
R. Hadsell
CLL
317
7,478
0
02 Dec 2016
OpenAI Gym
OpenAI Gym
Greg Brockman
Vicki Cheung
Ludwig Pettersson
Jonas Schneider
John Schulman
Jie Tang
Wojciech Zaremba
OffRL
ODL
204
5,073
0
05 Jun 2016
Model Predictive Path Integral Control using Covariance Variable
  Importance Sampling
Model Predictive Path Integral Control using Covariance Variable Importance Sampling
Grady Williams
Andrew Aldrich
Evangelos Theodorou
62
150
0
03 Sep 2015
An Empirical Investigation of Catastrophic Forgetting in Gradient-Based
  Neural Networks
An Empirical Investigation of Catastrophic Forgetting in Gradient-Based Neural Networks
Ian Goodfellow
M. Berk Mirza
Xia Da
Aaron Courville
Yoshua Bengio
137
1,439
0
21 Dec 2013
Playing Atari with Deep Reinforcement Learning
Playing Atari with Deep Reinforcement Learning
Volodymyr Mnih
Koray Kavukcuoglu
David Silver
Alex Graves
Ioannis Antonoglou
Daan Wierstra
Martin Riedmiller
114
12,201
0
19 Dec 2013
Non-stationary Stochastic Optimization
Non-stationary Stochastic Optimization
Omar Besbes
Y. Gur
A. Zeevi
153
431
0
20 Jul 2013
1