ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1912.00671
  4. Cited By
A Rigorous Theory of Conditional Mean Embeddings

A Rigorous Theory of Conditional Mean Embeddings

2 December 2019
I. Klebanov
Ingmar Schuster
T. Sullivan
ArXivPDFHTML

Papers citing "A Rigorous Theory of Conditional Mean Embeddings"

11 / 11 papers shown
Title
Returning The Favour: When Regression Benefits From Probabilistic Causal
  Knowledge
Returning The Favour: When Regression Benefits From Probabilistic Causal Knowledge
S. Bouabid
Jake Fawkes
Dino Sejdinovic
CML
44
0
0
26 Jan 2023
Learning linear operators: Infinite-dimensional regression as a
  well-behaved non-compact inverse problem
Learning linear operators: Infinite-dimensional regression as a well-behaved non-compact inverse problem
Mattes Mollenhauer
Nicole Mücke
T. Sullivan
38
25
0
16 Nov 2022
Optimal Rates for Regularized Conditional Mean Embedding Learning
Optimal Rates for Regularized Conditional Mean Embedding Learning
Zhu Li
Dimitri Meunier
Mattes Mollenhauer
Arthur Gretton
35
47
0
02 Aug 2022
Generalized Label Shift Correction via Minimum Uncertainty Principle:
  Theory and Algorithm
Generalized Label Shift Correction via Minimum Uncertainty Principle: Theory and Algorithm
You-Wei Luo
Chuan-Xian Ren
27
2
0
26 Feb 2022
Convergence Rates for Learning Linear Operators from Noisy Data
Convergence Rates for Learning Linear Operators from Noisy Data
Maarten V. de Hoop
Nikola B. Kovachki
Nicholas H. Nelsen
Andrew M. Stuart
21
54
0
27 Aug 2021
Conditional Bures Metric for Domain Adaptation
Conditional Bures Metric for Domain Adaptation
You-Wei Luo
Chuan-Xian Ren
26
49
0
31 Jul 2021
Sobolev Norm Learning Rates for Conditional Mean Embeddings
Sobolev Norm Learning Rates for Conditional Mean Embeddings
Prem M. Talwai
A. Shameli
D. Simchi-Levi
29
10
0
16 May 2021
Universal Robust Regression via Maximum Mean Discrepancy
Universal Robust Regression via Maximum Mean Discrepancy
Pierre Alquier
Mathieu Gerber
38
15
0
01 Jun 2020
A Measure-Theoretic Approach to Kernel Conditional Mean Embeddings
A Measure-Theoretic Approach to Kernel Conditional Mean Embeddings
Junhyung Park
Krikamol Muandet
35
78
0
10 Feb 2020
Constrained Polynomial Likelihood
Constrained Polynomial Likelihood
Caio Almeida
Ricardo Masini
P. Schneider
28
4
0
30 Oct 2019
Conditional mean embeddings as regressors - supplementary
Conditional mean embeddings as regressors - supplementary
Steffen Grunewalder
Guy Lever
Luca Baldassarre
Sam Patterson
Arthur Gretton
Massimiliano Pontil
85
143
0
21 May 2012
1