ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.12473
  4. Cited By
Bayesian Optimization for Categorical and Category-Specific Continuous
  Inputs

Bayesian Optimization for Categorical and Category-Specific Continuous Inputs

28 November 2019
Dang Nguyen
Sunil R. Gupta
Santu Rana
A. Shilton
Svetha Venkatesh
ArXiv (abs)PDFHTML

Papers citing "Bayesian Optimization for Categorical and Category-Specific Continuous Inputs"

13 / 13 papers shown
Title
Dealing with Integer-valued Variables in Bayesian Optimization with
  Gaussian Processes
Dealing with Integer-valued Variables in Bayesian Optimization with Gaussian Processes
E.C. Garrido-Merchán
Daniel Hernández-Lobato
124
232
0
12 Jun 2017
Parallel and Distributed Thompson Sampling for Large-scale Accelerated
  Exploration of Chemical Space
Parallel and Distributed Thompson Sampling for Large-scale Accelerated Exploration of Chemical Space
José Miguel Hernández-Lobato
James Requeima
Edward O. Pyzer-Knapp
Alán Aspuru-Guzik
81
185
0
06 Jun 2017
Mondrian Forests for Large-Scale Regression when Uncertainty Matters
Mondrian Forests for Large-Scale Regression when Uncertainty Matters
Balaji Lakshminarayanan
Daniel M. Roy
Yee Whye Teh
UQCV
103
56
0
11 Jun 2015
Batch Bayesian Optimization via Local Penalization
Batch Bayesian Optimization via Local Penalization
Javier I. González
Zhenwen Dai
Philipp Hennig
Neil D. Lawrence
135
357
0
29 May 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,364
0
22 Dec 2014
Predictive Entropy Search for Efficient Global Optimization of Black-box
  Functions
Predictive Entropy Search for Efficient Global Optimization of Black-box Functions
José Miguel Hernández-Lobato
Matthew W. Hoffman
Zoubin Ghahramani
109
648
0
10 Jun 2014
Prior-free and prior-dependent regret bounds for Thompson Sampling
Prior-free and prior-dependent regret bounds for Thompson Sampling
Sébastien Bubeck
Che-Yu Liu
122
96
0
21 Apr 2013
Learning to Optimize Via Posterior Sampling
Learning to Optimize Via Posterior Sampling
Daniel Russo
Benjamin Van Roy
231
703
0
11 Jan 2013
Bayesian Optimization in a Billion Dimensions via Random Embeddings
Bayesian Optimization in a Billion Dimensions via Random Embeddings
Ziyun Wang
Frank Hutter
M. Zoghi
David Matheson
Nando de Freitas
197
446
0
09 Jan 2013
Further Optimal Regret Bounds for Thompson Sampling
Further Optimal Regret Bounds for Thompson Sampling
Shipra Agrawal
Navin Goyal
115
442
0
15 Sep 2012
Parallelizing Exploration-Exploitation Tradeoffs with Gaussian Process
  Bandit Optimization
Parallelizing Exploration-Exploitation Tradeoffs with Gaussian Process Bandit Optimization
Thomas Desautels
Andreas Krause
J. W. Burdick
109
473
0
27 Jun 2012
Convergence rates of efficient global optimization algorithms
Convergence rates of efficient global optimization algorithms
Adam D. Bull
152
641
0
18 Jan 2011
Gaussian Process Optimization in the Bandit Setting: No Regret and
  Experimental Design
Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design
Niranjan Srinivas
Andreas Krause
Sham Kakade
Matthias Seeger
181
1,626
0
21 Dec 2009
1