ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.12360
  4. Cited By
How Much Over-parameterization Is Sufficient to Learn Deep ReLU
  Networks?

How Much Over-parameterization Is Sufficient to Learn Deep ReLU Networks?

27 November 2019
Zixiang Chen
Yuan Cao
Difan Zou
Quanquan Gu
ArXivPDFHTML

Papers citing "How Much Over-parameterization Is Sufficient to Learn Deep ReLU Networks?"

37 / 37 papers shown
Title
Sharper Guarantees for Learning Neural Network Classifiers with Gradient
  Methods
Sharper Guarantees for Learning Neural Network Classifiers with Gradient Methods
Hossein Taheri
Christos Thrampoulidis
Arya Mazumdar
MLT
36
0
0
13 Oct 2024
Understanding the training of infinitely deep and wide ResNets with
  Conditional Optimal Transport
Understanding the training of infinitely deep and wide ResNets with Conditional Optimal Transport
Raphael Barboni
Gabriel Peyré
Franccois-Xavier Vialard
37
3
0
19 Mar 2024
Fundamental Limits of Deep Learning-Based Binary Classifiers Trained with Hinge Loss
Fundamental Limits of Deep Learning-Based Binary Classifiers Trained with Hinge Loss
T. Getu
Georges Kaddoum
M. Bennis
40
1
0
13 Sep 2023
Mind the spikes: Benign overfitting of kernels and neural networks in
  fixed dimension
Mind the spikes: Benign overfitting of kernels and neural networks in fixed dimension
Moritz Haas
David Holzmüller
U. V. Luxburg
Ingo Steinwart
MLT
35
14
0
23 May 2023
Convergence beyond the over-parameterized regime using Rayleigh
  quotients
Convergence beyond the over-parameterized regime using Rayleigh quotients
David A. R. Robin
Kevin Scaman
Marc Lelarge
27
3
0
19 Jan 2023
A Functional-Space Mean-Field Theory of Partially-Trained Three-Layer
  Neural Networks
A Functional-Space Mean-Field Theory of Partially-Trained Three-Layer Neural Networks
Zhengdao Chen
Eric Vanden-Eijnden
Joan Bruna
MLT
27
5
0
28 Oct 2022
When Expressivity Meets Trainability: Fewer than $n$ Neurons Can Work
When Expressivity Meets Trainability: Fewer than nnn Neurons Can Work
Jiawei Zhang
Yushun Zhang
Mingyi Hong
Ruoyu Sun
Zhi-Quan Luo
29
10
0
21 Oct 2022
Global Convergence of SGD On Two Layer Neural Nets
Global Convergence of SGD On Two Layer Neural Nets
Pulkit Gopalani
Anirbit Mukherjee
26
5
0
20 Oct 2022
Approximation results for Gradient Descent trained Shallow Neural
  Networks in $1d$
Approximation results for Gradient Descent trained Shallow Neural Networks in 1d1d1d
R. Gentile
G. Welper
ODL
54
6
0
17 Sep 2022
Robustness in deep learning: The good (width), the bad (depth), and the
  ugly (initialization)
Robustness in deep learning: The good (width), the bad (depth), and the ugly (initialization)
Zhenyu Zhu
Fanghui Liu
Grigorios G. Chrysos
V. Cevher
39
19
0
15 Sep 2022
Generalization Properties of NAS under Activation and Skip Connection
  Search
Generalization Properties of NAS under Activation and Skip Connection Search
Zhenyu Zhu
Fanghui Liu
Grigorios G. Chrysos
V. Cevher
AI4CE
28
15
0
15 Sep 2022
Informed Learning by Wide Neural Networks: Convergence, Generalization
  and Sampling Complexity
Informed Learning by Wide Neural Networks: Convergence, Generalization and Sampling Complexity
Jianyi Yang
Shaolei Ren
32
3
0
02 Jul 2022
Bounding the Width of Neural Networks via Coupled Initialization -- A
  Worst Case Analysis
Bounding the Width of Neural Networks via Coupled Initialization -- A Worst Case Analysis
Alexander Munteanu
Simon Omlor
Zhao Song
David P. Woodruff
33
15
0
26 Jun 2022
Understanding the Generalization Benefit of Normalization Layers:
  Sharpness Reduction
Understanding the Generalization Benefit of Normalization Layers: Sharpness Reduction
Kaifeng Lyu
Zhiyuan Li
Sanjeev Arora
FAtt
45
70
0
14 Jun 2022
Improved Overparametrization Bounds for Global Convergence of Stochastic
  Gradient Descent for Shallow Neural Networks
Improved Overparametrization Bounds for Global Convergence of Stochastic Gradient Descent for Shallow Neural Networks
Bartlomiej Polaczyk
J. Cyranka
ODL
33
3
0
28 Jan 2022
Training Multi-Layer Over-Parametrized Neural Network in Subquadratic
  Time
Training Multi-Layer Over-Parametrized Neural Network in Subquadratic Time
Zhao Song
Licheng Zhang
Ruizhe Zhang
32
64
0
14 Dec 2021
Subquadratic Overparameterization for Shallow Neural Networks
Subquadratic Overparameterization for Shallow Neural Networks
Chaehwan Song
Ali Ramezani-Kebrya
Thomas Pethick
Armin Eftekhari
V. Cevher
30
31
0
02 Nov 2021
Understanding the Generalization of Adam in Learning Neural Networks
  with Proper Regularization
Understanding the Generalization of Adam in Learning Neural Networks with Proper Regularization
Difan Zou
Yuan Cao
Yuanzhi Li
Quanquan Gu
MLT
AI4CE
47
38
0
25 Aug 2021
Small random initialization is akin to spectral learning: Optimization
  and generalization guarantees for overparameterized low-rank matrix
  reconstruction
Small random initialization is akin to spectral learning: Optimization and generalization guarantees for overparameterized low-rank matrix reconstruction
Dominik Stöger
Mahdi Soltanolkotabi
ODL
42
75
0
28 Jun 2021
The Future is Log-Gaussian: ResNets and Their Infinite-Depth-and-Width
  Limit at Initialization
The Future is Log-Gaussian: ResNets and Their Infinite-Depth-and-Width Limit at Initialization
Mufan Li
Mihai Nica
Daniel M. Roy
32
33
0
07 Jun 2021
Toward Understanding the Feature Learning Process of Self-supervised
  Contrastive Learning
Toward Understanding the Feature Learning Process of Self-supervised Contrastive Learning
Zixin Wen
Yuanzhi Li
SSL
MLT
32
131
0
31 May 2021
The Discovery of Dynamics via Linear Multistep Methods and Deep
  Learning: Error Estimation
The Discovery of Dynamics via Linear Multistep Methods and Deep Learning: Error Estimation
Q. Du
Yiqi Gu
Haizhao Yang
Chao Zhou
26
20
0
21 Mar 2021
Experiments with Rich Regime Training for Deep Learning
Experiments with Rich Regime Training for Deep Learning
Xinyan Li
A. Banerjee
32
2
0
26 Feb 2021
On the Proof of Global Convergence of Gradient Descent for Deep ReLU
  Networks with Linear Widths
On the Proof of Global Convergence of Gradient Descent for Deep ReLU Networks with Linear Widths
Quynh N. Nguyen
43
48
0
24 Jan 2021
Reproducing Activation Function for Deep Learning
Reproducing Activation Function for Deep Learning
Senwei Liang
Liyao Lyu
Chunmei Wang
Haizhao Yang
36
21
0
13 Jan 2021
A Convergence Theory Towards Practical Over-parameterized Deep Neural
  Networks
A Convergence Theory Towards Practical Over-parameterized Deep Neural Networks
Asaf Noy
Yi Tian Xu
Y. Aflalo
Lihi Zelnik-Manor
R. L. Jin
39
3
0
12 Jan 2021
Neural Network Approximation: Three Hidden Layers Are Enough
Neural Network Approximation: Three Hidden Layers Are Enough
Zuowei Shen
Haizhao Yang
Shijun Zhang
30
115
0
25 Oct 2020
The Interpolation Phase Transition in Neural Networks: Memorization and
  Generalization under Lazy Training
The Interpolation Phase Transition in Neural Networks: Memorization and Generalization under Lazy Training
Andrea Montanari
Yiqiao Zhong
49
95
0
25 Jul 2020
Two-Layer Neural Networks for Partial Differential Equations:
  Optimization and Generalization Theory
Two-Layer Neural Networks for Partial Differential Equations: Optimization and Generalization Theory
Tao Luo
Haizhao Yang
32
73
0
28 Jun 2020
Can Temporal-Difference and Q-Learning Learn Representation? A
  Mean-Field Theory
Can Temporal-Difference and Q-Learning Learn Representation? A Mean-Field Theory
Yufeng Zhang
Qi Cai
Zhuoran Yang
Yongxin Chen
Zhaoran Wang
OOD
MLT
117
11
0
08 Jun 2020
Is deeper better? It depends on locality of relevant features
Is deeper better? It depends on locality of relevant features
Takashi Mori
Masahito Ueda
OOD
25
4
0
26 May 2020
Convergence of End-to-End Training in Deep Unsupervised Contrastive
  Learning
Convergence of End-to-End Training in Deep Unsupervised Contrastive Learning
Zixin Wen
SSL
21
2
0
17 Feb 2020
Deep Network Approximation for Smooth Functions
Deep Network Approximation for Smooth Functions
Jianfeng Lu
Zuowei Shen
Haizhao Yang
Shijun Zhang
67
247
0
09 Jan 2020
Towards Understanding the Spectral Bias of Deep Learning
Towards Understanding the Spectral Bias of Deep Learning
Yuan Cao
Zhiying Fang
Yue Wu
Ding-Xuan Zhou
Quanquan Gu
41
214
0
03 Dec 2019
Gradient Descent can Learn Less Over-parameterized Two-layer Neural
  Networks on Classification Problems
Gradient Descent can Learn Less Over-parameterized Two-layer Neural Networks on Classification Problems
Atsushi Nitanda
Geoffrey Chinot
Taiji Suzuki
MLT
16
33
0
23 May 2019
Global optimality conditions for deep neural networks
Global optimality conditions for deep neural networks
Chulhee Yun
S. Sra
Ali Jadbabaie
128
117
0
08 Jul 2017
Norm-Based Capacity Control in Neural Networks
Norm-Based Capacity Control in Neural Networks
Behnam Neyshabur
Ryota Tomioka
Nathan Srebro
127
577
0
27 Feb 2015
1