ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.11709
  4. Cited By
Maximum likelihood estimation of regularisation parameters in
  high-dimensional inverse problems: an empirical Bayesian approach. Part I:
  Methodology and Experiments

Maximum likelihood estimation of regularisation parameters in high-dimensional inverse problems: an empirical Bayesian approach. Part I: Methodology and Experiments

26 November 2019
A. F. Vidal
Valentin De Bortoli
Marcelo Pereyra
Alain Durmus
ArXivPDFHTML

Papers citing "Maximum likelihood estimation of regularisation parameters in high-dimensional inverse problems: an empirical Bayesian approach. Part I: Methodology and Experiments"

7 / 7 papers shown
Title
Non-asymptotic Analysis of Biased Stochastic Approximation Scheme
Non-asymptotic Analysis of Biased Stochastic Approximation Scheme
Belhal Karimi
B. Miasojedow
Eric Moulines
Hoi-To Wai
63
91
0
02 Feb 2019
Residual Dense Network for Image Super-Resolution
Residual Dense Network for Image Super-Resolution
Yulun Zhang
Yapeng Tian
Yu Kong
Bineng Zhong
Y. Fu
SupR
138
3,320
0
24 Feb 2018
Non-asymptotic convergence analysis for the Unadjusted Langevin
  Algorithm
Non-asymptotic convergence analysis for the Unadjusted Langevin Algorithm
Alain Durmus
Eric Moulines
66
412
0
17 Jul 2015
Stein Unbiased GrAdient estimator of the Risk (SUGAR) for multiple
  parameter selection
Stein Unbiased GrAdient estimator of the Risk (SUGAR) for multiple parameter selection
Charles-Alban Deledalle
Samuel Vaiter
M. Fadili
Gabriel Peyré
61
119
0
06 May 2014
Estimating the granularity coefficient of a Potts-Markov random field
  within an MCMC algorithm
Estimating the granularity coefficient of a Potts-Markov random field within an MCMC algorithm
Marcelo Pereyra
N. Dobigeon
H. Batatia
J. Tourneret
69
70
0
23 Jul 2012
Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse
  Regression-Based Approaches
Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches
J. Bioucas-Dias
Antonio J. Plaza
N. Dobigeon
M. Parente
Q. Du
P. Gader
Jocelyn Chanussot
86
2,572
0
28 Feb 2012
The Projected GSURE for Automatic Parameter Tuning in Iterative
  Shrinkage Methods
The Projected GSURE for Automatic Parameter Tuning in Iterative Shrinkage Methods
Raja Giryes
Michael Elad
Yonina C. Eldar
140
130
0
21 Mar 2010
1