Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1911.11380
Cited By
Using Physics-Informed Super-Resolution Generative Adversarial Networks for Subgrid Modeling in Turbulent Reactive Flows
26 November 2019
Mathis Bode
M. Gauding
Zeyu Lian
D. Denker
M. Davidovic
K. Kleinheinz
J. Jitsev
H. Pitsch
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Using Physics-Informed Super-Resolution Generative Adversarial Networks for Subgrid Modeling in Turbulent Reactive Flows"
5 / 5 papers shown
Title
Origin-Destination Network Generation via Gravity-Guided GAN
Can Rong
Huandong Wang
Yong Li
22
5
0
06 Jun 2023
PhySRNet: Physics informed super-resolution network for application in computational solid mechanics
Rajat Arora
AI4CE
35
10
0
30 Jun 2022
Machine Learning-Accelerated Computational Solid Mechanics: Application to Linear Elasticity
Rajat Arora
AI4CE
24
7
0
16 Dec 2021
A Hybrid Science-Guided Machine Learning Approach for Modeling and Optimizing Chemical Processes
Niket Sharma
Y. A. Liu
9
80
0
02 Dec 2021
Physics-Informed Neural Network Super Resolution for Advection-Diffusion Models
Chulin Wang
E. Bentivegna
Wang Zhou
L. Klein
Bruce Elmegreen
DiffM
16
32
0
04 Nov 2020
1