ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.11380
  4. Cited By
Using Physics-Informed Super-Resolution Generative Adversarial Networks
  for Subgrid Modeling in Turbulent Reactive Flows

Using Physics-Informed Super-Resolution Generative Adversarial Networks for Subgrid Modeling in Turbulent Reactive Flows

26 November 2019
Mathis Bode
M. Gauding
Zeyu Lian
D. Denker
M. Davidovic
K. Kleinheinz
J. Jitsev
H. Pitsch
    AI4CE
ArXivPDFHTML

Papers citing "Using Physics-Informed Super-Resolution Generative Adversarial Networks for Subgrid Modeling in Turbulent Reactive Flows"

5 / 5 papers shown
Title
Origin-Destination Network Generation via Gravity-Guided GAN
Origin-Destination Network Generation via Gravity-Guided GAN
Can Rong
Huandong Wang
Yong Li
22
5
0
06 Jun 2023
PhySRNet: Physics informed super-resolution network for application in
  computational solid mechanics
PhySRNet: Physics informed super-resolution network for application in computational solid mechanics
Rajat Arora
AI4CE
35
10
0
30 Jun 2022
Machine Learning-Accelerated Computational Solid Mechanics: Application
  to Linear Elasticity
Machine Learning-Accelerated Computational Solid Mechanics: Application to Linear Elasticity
Rajat Arora
AI4CE
24
7
0
16 Dec 2021
A Hybrid Science-Guided Machine Learning Approach for Modeling and
  Optimizing Chemical Processes
A Hybrid Science-Guided Machine Learning Approach for Modeling and Optimizing Chemical Processes
Niket Sharma
Y. A. Liu
9
80
0
02 Dec 2021
Physics-Informed Neural Network Super Resolution for Advection-Diffusion
  Models
Physics-Informed Neural Network Super Resolution for Advection-Diffusion Models
Chulin Wang
E. Bentivegna
Wang Zhou
L. Klein
Bruce Elmegreen
DiffM
16
32
0
04 Nov 2020
1