ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.10914
  4. Cited By
Invert to Learn to Invert

Invert to Learn to Invert

25 November 2019
P. Putzky
Max Welling
ArXivPDFHTML

Papers citing "Invert to Learn to Invert"

17 / 17 papers shown
Title
On Sensitivity and Robustness of Normalization Schemes to Input
  Distribution Shifts in Automatic MR Image Diagnosis
On Sensitivity and Robustness of Normalization Schemes to Input Distribution Shifts in Automatic MR Image Diagnosis
Divyam Madaan
D. Sodickson
K. Cho
S. Chopra
OOD
MedIm
40
1
0
23 Jun 2023
CAMP-Net: Consistency-Aware Multi-Prior Network for Accelerated MRI
  Reconstruction
CAMP-Net: Consistency-Aware Multi-Prior Network for Accelerated MRI Reconstruction
Liping Zhang
Xiaobo Li
Weitian Chen
39
5
0
20 Jun 2023
Stable Deep MRI Reconstruction using Generative Priors
Stable Deep MRI Reconstruction using Generative Priors
Martin Zach
Florian Knoll
Thomas Pock
OOD
MedIm
DiffM
38
17
0
25 Oct 2022
Deep Bayesian inference for seismic imaging with tasks
Deep Bayesian inference for seismic imaging with tasks
Ali Siahkoohi
G. Rizzuti
Felix J. Herrmann
BDL
UQCV
42
21
0
10 Oct 2021
Learning by example: fast reliability-aware seismic imaging with
  normalizing flows
Learning by example: fast reliability-aware seismic imaging with normalizing flows
Ali Siahkoohi
Felix J. Herrmann
OOD
31
13
0
13 Apr 2021
Preconditioned training of normalizing flows for variational inference
  in inverse problems
Preconditioned training of normalizing flows for variational inference in inverse problems
Ali Siahkoohi
G. Rizzuti
M. Louboutin
Philipp A. Witte
Felix J. Herrmann
80
32
0
11 Jan 2021
Machine Learning in Magnetic Resonance Imaging: Image Reconstruction
Machine Learning in Magnetic Resonance Imaging: Image Reconstruction
Javier Montalt-Tordera
V. Muthurangu
A. Hauptmann
J. Steeden
AI4CE
29
40
0
09 Dec 2020
Adversarial Robust Training of Deep Learning MRI Reconstruction Models
Adversarial Robust Training of Deep Learning MRI Reconstruction Models
Francesco Calivá
Kaiyang Cheng
Rutwik Shah
V. Pedoia
OOD
AAML
MedIm
30
10
0
30 Oct 2020
Experimental design for MRI by greedy policy search
Experimental design for MRI by greedy policy search
Tim Bakker
H. V. Hoof
Max Welling
29
56
0
30 Oct 2020
Faster Uncertainty Quantification for Inverse Problems with Conditional
  Normalizing Flows
Faster Uncertainty Quantification for Inverse Problems with Conditional Normalizing Flows
Ali Siahkoohi
G. Rizzuti
Philipp A. Witte
Felix J. Herrmann
AI4CE
19
16
0
15 Jul 2020
Understanding and Mitigating Exploding Inverses in Invertible Neural
  Networks
Understanding and Mitigating Exploding Inverses in Invertible Neural Networks
Jens Behrmann
Paul Vicol
Kuan-Chieh Wang
Roger C. Grosse
J. Jacobsen
23
93
0
16 Jun 2020
Parameterizing uncertainty by deep invertible networks, an application
  to reservoir characterization
Parameterizing uncertainty by deep invertible networks, an application to reservoir characterization
G. Rizzuti
Ali Siahkoohi
Philipp A. Witte
Felix J. Herrmann
UQCV
33
20
0
16 Apr 2020
An Adaptive Intelligence Algorithm for Undersampled Knee MRI
  Reconstruction
An Adaptive Intelligence Algorithm for Undersampled Knee MRI Reconstruction
Nicola Pezzotti
Sahar Yousefi
M. Elmahdy
J. V. Gemert
C. Schulke
...
Sergey Kastryulin
B. Lelieveldt
M. Osch
E. Weerdt
Marius Staring
27
97
0
15 Apr 2020
$Σ$-net: Systematic Evaluation of Iterative Deep Neural Networks
  for Fast Parallel MR Image Reconstruction
ΣΣΣ-net: Systematic Evaluation of Iterative Deep Neural Networks for Fast Parallel MR Image Reconstruction
Kerstin Hammernik
Jo Schlemper
C. Qin
Jinming Duan
Ronald M. Summers
Daniel Rueckert
30
24
0
18 Dec 2019
i-RIM applied to the fastMRI challenge
i-RIM applied to the fastMRI challenge
P. Putzky
D. Karkalousos
Jonas Teuwen
Nikita Miriakov
Bart Bakker
M. Caan
Max Welling
8
39
0
20 Oct 2019
Multi-Scale Learned Iterative Reconstruction
Multi-Scale Learned Iterative Reconstruction
A. Hauptmann
J. Adler
Simon Arridge
Ozan Oktem
36
37
0
01 Aug 2019
Invertible generative models for inverse problems: mitigating
  representation error and dataset bias
Invertible generative models for inverse problems: mitigating representation error and dataset bias
Muhammad Asim
Max Daniels
Oscar Leong
Ali Ahmed
Paul Hand
26
146
0
28 May 2019
1