ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.08250
  4. Cited By
On the Discrepancy between the Theoretical Analysis and Practical
  Implementations of Compressed Communication for Distributed Deep Learning

On the Discrepancy between the Theoretical Analysis and Practical Implementations of Compressed Communication for Distributed Deep Learning

19 November 2019
Aritra Dutta
El Houcine Bergou
A. Abdelmoniem
Chen-Yu Ho
Atal Narayan Sahu
Marco Canini
Panos Kalnis
ArXivPDFHTML

Papers citing "On the Discrepancy between the Theoretical Analysis and Practical Implementations of Compressed Communication for Distributed Deep Learning"

12 / 12 papers shown
Title
Personalized federated learning based on feature fusion
Personalized federated learning based on feature fusion
Wolong Xing
Zhenkui Shi
Hongyan Peng
Xiantao Hu
Xianxian Li
FedML
39
0
0
24 Jun 2024
How does promoting the minority fraction affect generalization? A
  theoretical study of the one-hidden-layer neural network on group imbalance
How does promoting the minority fraction affect generalization? A theoretical study of the one-hidden-layer neural network on group imbalance
Hongkang Li
Shuai Zhang
Yihua Zhang
Meng Wang
Sijia Liu
Pin-Yu Chen
41
4
0
12 Mar 2024
RS-DGC: Exploring Neighborhood Statistics for Dynamic Gradient
  Compression on Remote Sensing Image Interpretation
RS-DGC: Exploring Neighborhood Statistics for Dynamic Gradient Compression on Remote Sensing Image Interpretation
Weiying Xie
Zixuan Wang
Jitao Ma
Daixun Li
Yunsong Li
30
0
0
29 Dec 2023
Demystifying the Myths and Legends of Nonconvex Convergence of SGD
Demystifying the Myths and Legends of Nonconvex Convergence of SGD
Aritra Dutta
El Houcine Bergou
Soumia Boucherouite
Nicklas Werge
M. Kandemir
Xin Li
26
0
0
19 Oct 2023
Privacy Assessment on Reconstructed Images: Are Existing Evaluation
  Metrics Faithful to Human Perception?
Privacy Assessment on Reconstructed Images: Are Existing Evaluation Metrics Faithful to Human Perception?
Xiaoxiao Sun
Nidham Gazagnadou
Vivek Sharma
Lingjuan Lyu
Hongdong Li
Liang Zheng
47
8
0
22 Sep 2023
On the effectiveness of partial variance reduction in federated learning
  with heterogeneous data
On the effectiveness of partial variance reduction in federated learning with heterogeneous data
Bo-wen Li
Mikkel N. Schmidt
T. S. Alstrøm
Sebastian U. Stich
FedML
37
9
0
05 Dec 2022
Adaptive Compression for Communication-Efficient Distributed Training
Adaptive Compression for Communication-Efficient Distributed Training
Maksim Makarenko
Elnur Gasanov
Rustem Islamov
Abdurakhmon Sadiev
Peter Richtárik
39
13
0
31 Oct 2022
Distributed Learning With Sparsified Gradient Differences
Distributed Learning With Sparsified Gradient Differences
Yicheng Chen
Rick S. Blum
Martin Takáč
Brian M. Sadler
31
15
0
05 Feb 2022
FastSGD: A Fast Compressed SGD Framework for Distributed Machine
  Learning
FastSGD: A Fast Compressed SGD Framework for Distributed Machine Learning
Keyu Yang
Lu Chen
Zhihao Zeng
Yunjun Gao
20
9
0
08 Dec 2021
Rethinking gradient sparsification as total error minimization
Rethinking gradient sparsification as total error minimization
Atal Narayan Sahu
Aritra Dutta
A. Abdelmoniem
Trambak Banerjee
Marco Canini
Panos Kalnis
45
56
0
02 Aug 2021
Layer-wise Adaptive Gradient Sparsification for Distributed Deep
  Learning with Convergence Guarantees
Layer-wise Adaptive Gradient Sparsification for Distributed Deep Learning with Convergence Guarantees
S. Shi
Zhenheng Tang
Qiang-qiang Wang
Kaiyong Zhao
X. Chu
19
22
0
20 Nov 2019
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
1