ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.07420
  4. Cited By
A Graph Autoencoder Approach to Causal Structure Learning

A Graph Autoencoder Approach to Causal Structure Learning

18 November 2019
Ignavier Ng
Shengyu Zhu
Zhitang Chen
Zhuangyan Fang
    BDL
    CML
ArXivPDFHTML

Papers citing "A Graph Autoencoder Approach to Causal Structure Learning"

12 / 12 papers shown
Title
Recovering Linear Causal Models with Latent Variables via Cholesky
  Factorization of Covariance Matrix
Recovering Linear Causal Models with Latent Variables via Cholesky Factorization of Covariance Matrix
Yunfeng Cai
Xu Li
Ming Sun
Ping Li
CML
21
1
0
01 Nov 2023
A Survey on Causal Discovery Methods for I.I.D. and Time Series Data
A Survey on Causal Discovery Methods for I.I.D. and Time Series Data
Uzma Hasan
Emam Hossain
Md. Osman Gani
CML
AI4TS
26
24
0
27 Mar 2023
Directed Acyclic Graphs With Tears
Directed Acyclic Graphs With Tears
Zhichao Chen
Zhiqiang Ge
CML
28
5
0
04 Feb 2023
On Root Cause Localization and Anomaly Mitigation through Causal
  Inference
On Root Cause Localization and Anomaly Mitigation through Causal Inference
Xiao Han
Lu Zhang
Yongkai Wu
Shuhan Yuan
26
7
0
08 Dec 2022
Deep Causal Learning: Representation, Discovery and Inference
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CML
BDL
28
11
0
07 Nov 2022
gCastle: A Python Toolbox for Causal Discovery
gCastle: A Python Toolbox for Causal Discovery
Keli Zhang
Shengyu Zhu
Marcus Kalander
Ignavier Ng
Junjian Ye
Zhitang Chen
Lujia Pan
CML
24
60
0
30 Nov 2021
Towards Federated Bayesian Network Structure Learning with Continuous
  Optimization
Towards Federated Bayesian Network Structure Learning with Continuous Optimization
Ignavier Ng
Kun Zhang
FedML
42
38
0
18 Oct 2021
Learning Neural Causal Models with Active Interventions
Learning Neural Causal Models with Active Interventions
Nino Scherrer
O. Bilaniuk
Yashas Annadani
Anirudh Goyal
Patrick Schwab
Bernhard Schölkopf
Michael C. Mozer
Yoshua Bengio
Stefan Bauer
Nan Rosemary Ke
CML
33
42
0
06 Sep 2021
Ordering-Based Causal Discovery with Reinforcement Learning
Ordering-Based Causal Discovery with Reinforcement Learning
Xiaoqiang Wang
Yali Du
Shengyu Zhu
Liangjun Ke
Zhitang Chen
Jianye Hao
Jun Wang
CML
23
63
0
14 May 2021
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
32
296
0
03 Mar 2021
CausalVAE: Structured Causal Disentanglement in Variational Autoencoder
CausalVAE: Structured Causal Disentanglement in Variational Autoencoder
Mengyue Yang
Furui Liu
Zhitang Chen
Xinwei Shen
Jianye Hao
Jun Wang
OOD
CoGe
CML
28
44
0
18 Apr 2020
Causal Inference and Causal Explanation with Background Knowledge
Causal Inference and Causal Explanation with Background Knowledge
Christopher Meek
CML
216
626
0
20 Feb 2013
1