Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1911.05911
Cited By
Recent Advances in Algorithmic High-Dimensional Robust Statistics
14 November 2019
Ilias Diakonikolas
D. Kane
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Recent Advances in Algorithmic High-Dimensional Robust Statistics"
50 / 71 papers shown
Title
Learning High-dimensional Gaussians from Censored Data
Arnab Bhattacharyya
C. Daskalakis
Themis Gouleakis
Yuhao Wang
31
0
0
28 Apr 2025
Geometric Median Matching for Robust k-Subset Selection from Noisy Data
Anish Acharya
Sujay Sanghavi
Alexandros G. Dimakis
Inderjit S Dhillon
AAML
67
0
0
01 Apr 2025
Geometric Median (GM) Matching for Robust Data Pruning
Anish Acharya
Inderjit S Dhillon
Sujay Sanghavi
AAML
59
0
0
20 Jan 2025
Optimal Rates for Robust Stochastic Convex Optimization
Changyu Gao
Andrew Lowy
Xingyu Zhou
Stephen J. Wright
81
0
0
15 Dec 2024
Tolerant Algorithms for Learning with Arbitrary Covariate Shift
Surbhi Goel
Abhishek Shetty
Konstantinos Stavropoulos
Arsen Vasilyan
OOD
34
2
0
04 Jun 2024
Robust Kernel Hypothesis Testing under Data Corruption
Antonin Schrab
Ilmun Kim
50
3
0
30 May 2024
Learning from Uncertain Data: From Possible Worlds to Possible Models
Jiongli Zhu
Su Feng
Boris Glavic
Babak Salimi
42
0
0
28 May 2024
Robust Sparse Mean Estimation via Incremental Learning
Jianhao Ma
Ruidi Chen
Yinghui He
S. Fattahi
Wei Hu
41
0
0
24 May 2023
On the Optimal Batch Size for Byzantine-Robust Distributed Learning
Yi-Rui Yang
Chang-Wei Shi
Wu-Jun Li
FedML
AAML
32
0
0
23 May 2023
Nearly-Linear Time and Streaming Algorithms for Outlier-Robust PCA
Ilias Diakonikolas
D. Kane
Ankit Pensia
Thanasis Pittas
OOD
36
10
0
04 May 2023
On Private and Robust Bandits
Yulian Wu
Xingyu Zhou
Youming Tao
Di Wang
24
5
0
06 Feb 2023
Robust Estimation under the Wasserstein Distance
Sloan Nietert
Rachel Cummings
Ziv Goldfeld
36
4
0
02 Feb 2023
Near Optimal Private and Robust Linear Regression
Xiyang Liu
Prateek Jain
Weihao Kong
Sewoong Oh
A. Suggala
41
9
0
30 Jan 2023
Robust empirical risk minimization via Newton's method
Eirini Ioannou
Muni Sreenivas Pydi
Po-Ling Loh
23
2
0
30 Jan 2023
Statistically Optimal Robust Mean and Covariance Estimation for Anisotropic Gaussians
A. Minasyan
Nikita Zhivotovskiy
36
9
0
21 Jan 2023
Private estimation algorithms for stochastic block models and mixture models
Hongjie Chen
Vincent Cohen-Addad
Tommaso dÓrsi
Alessandro Epasto
Jacob Imola
David Steurer
Stefan Tiegel
FedML
45
20
0
11 Jan 2023
Backdoor Attacks Against Dataset Distillation
Yugeng Liu
Zheng Li
Michael Backes
Yun Shen
Yang Zhang
DD
47
28
0
03 Jan 2023
Robustness Implies Privacy in Statistical Estimation
Samuel B. Hopkins
Gautam Kamath
Mahbod Majid
Shyam Narayanan
23
50
0
09 Dec 2022
Outlier-Robust Sparse Mean Estimation for Heavy-Tailed Distributions
Ilias Diakonikolas
D. Kane
Jasper C. H. Lee
Ankit Pensia
30
12
0
29 Nov 2022
A Characterization of List Learnability
Moses Charikar
Chirag Pabbaraju
37
13
0
07 Nov 2022
Is Out-of-Distribution Detection Learnable?
Zhen Fang
Yixuan Li
Jie Lu
Jiahua Dong
Bo Han
Feng Liu
OODD
44
125
0
26 Oct 2022
Tackling Instance-Dependent Label Noise with Dynamic Distribution Calibration
Manyi Zhang
Yuxin Ren
Zihao Wang
C. Yuan
29
3
0
11 Oct 2022
On Optimal Learning Under Targeted Data Poisoning
Steve Hanneke
Amin Karbasi
Mohammad Mahmoody
Idan Mehalel
Shay Moran
AAML
FedML
36
7
0
06 Oct 2022
On the Impossible Safety of Large AI Models
El-Mahdi El-Mhamdi
Sadegh Farhadkhani
R. Guerraoui
Nirupam Gupta
L. Hoang
Rafael Pinot
Sébastien Rouault
John Stephan
37
31
0
30 Sep 2022
Improved covariance estimation: optimal robustness and sub-Gaussian guarantees under heavy tails
R. I. Oliveira
Zoraida F. Rico
42
10
0
27 Sep 2022
Outlier Robust and Sparse Estimation of Linear Regression Coefficients
Takeyuki Sasai
Hironori Fujisawa
35
4
0
24 Aug 2022
Holistic Robust Data-Driven Decisions
Amine Bennouna
Bart P. G. Van Parys
Ryan Lucas
OOD
41
22
0
19 Jul 2022
Robust and Sparse Estimation of Linear Regression Coefficients with Heavy-tailed Noises and Covariates
Takeyuki Sasai
26
4
0
15 Jun 2022
Trimmed Maximum Likelihood Estimation for Robust Learning in Generalized Linear Models
Pranjal Awasthi
Abhimanyu Das
Weihao Kong
Rajat Sen
25
6
0
09 Jun 2022
Optimal SQ Lower Bounds for Robustly Learning Discrete Product Distributions and Ising Models
Ilias Diakonikolas
D. Kane
Yuxin Sun
33
1
0
09 Jun 2022
Certifying Data-Bias Robustness in Linear Regression
Anna P. Meyer
Aws Albarghouthi
Loris Dántoni
35
3
0
07 Jun 2022
Robust Sparse Mean Estimation via Sum of Squares
Ilias Diakonikolas
D. Kane
Sushrut Karmalkar
Ankit Pensia
Thanasis Pittas
30
21
0
07 Jun 2022
Byzantine-Robust Online and Offline Distributed Reinforcement Learning
Yiding Chen
Xuezhou Zhang
Kaipeng Zhang
Mengdi Wang
Xiaojin Zhu
OffRL
29
16
0
01 Jun 2022
Communication-efficient distributed eigenspace estimation with arbitrary node failures
Vasileios Charisopoulos
Anil Damle
16
1
0
31 May 2022
Covariance Estimation: Optimal Dimension-free Guarantees for Adversarial Corruption and Heavy Tails
Pedro Abdalla
Nikita Zhivotovskiy
40
25
0
17 May 2022
Robust Testing in High-Dimensional Sparse Models
Anand George
C. Canonne
48
3
0
16 May 2022
Streaming Algorithms for High-Dimensional Robust Statistics
Ilias Diakonikolas
D. Kane
Ankit Pensia
Thanasis Pittas
24
21
0
26 Apr 2022
Robust estimation algorithms don't need to know the corruption level
Ayush Jain
A. Orlitsky
V. Ravindrakumar
21
6
0
11 Feb 2022
Robust Voting Rules from Algorithmic Robust Statistics
Allen Liu
Ankur Moitra
26
4
0
13 Dec 2021
Private Robust Estimation by Stabilizing Convex Relaxations
Pravesh Kothari
Pasin Manurangsi
A. Velingker
38
46
0
07 Dec 2021
Clustering Mixtures with Almost Optimal Separation in Polynomial Time
Jingkai Li
Allen Liu
30
23
0
01 Dec 2021
Mean-based Best Arm Identification in Stochastic Bandits under Reward Contamination
Arpan Mukherjee
A. Tajer
Pin-Yu Chen
Payel Das
AAML
FedML
34
9
0
14 Nov 2021
Robust Estimation for Random Graphs
Jayadev Acharya
Ayush Jain
Gautam Kamath
A. Suresh
Huanyu Zhang
35
8
0
09 Nov 2021
Certifying Robustness to Programmable Data Bias in Decision Trees
Anna P. Meyer
Aws Albarghouthi
Loris Dántoni
27
21
0
08 Oct 2021
Outlier-Robust Sparse Estimation via Non-Convex Optimization
Yu Cheng
Ilias Diakonikolas
Rong Ge
Shivam Gupta
D. Kane
Mahdi Soltanolkotabi
52
13
0
23 Sep 2021
SoK: Machine Learning Governance
Varun Chandrasekaran
Hengrui Jia
Anvith Thudi
Adelin Travers
Mohammad Yaghini
Nicolas Papernot
43
16
0
20 Sep 2021
ReLU Regression with Massart Noise
Ilias Diakonikolas
Jongho Park
Christos Tzamos
56
11
0
10 Sep 2021
Robust Regression Revisited: Acceleration and Improved Estimation Rates
A. Jambulapati
Jingkai Li
T. Schramm
Kevin Tian
AAML
32
17
0
22 Jun 2021
Non-asymptotic analysis and inference for an outlyingness induced winsorized mean
Y. Zuo
27
1
0
05 May 2021
Learning GMMs with Nearly Optimal Robustness Guarantees
Allen Liu
Ankur Moitra
26
15
0
19 Apr 2021
1
2
Next