ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.05911
  4. Cited By
Recent Advances in Algorithmic High-Dimensional Robust Statistics

Recent Advances in Algorithmic High-Dimensional Robust Statistics

14 November 2019
Ilias Diakonikolas
D. Kane
    OOD
ArXivPDFHTML

Papers citing "Recent Advances in Algorithmic High-Dimensional Robust Statistics"

50 / 71 papers shown
Title
Learning High-dimensional Gaussians from Censored Data
Learning High-dimensional Gaussians from Censored Data
Arnab Bhattacharyya
C. Daskalakis
Themis Gouleakis
Yuhao Wang
31
0
0
28 Apr 2025
Geometric Median Matching for Robust k-Subset Selection from Noisy Data
Geometric Median Matching for Robust k-Subset Selection from Noisy Data
Anish Acharya
Sujay Sanghavi
Alexandros G. Dimakis
Inderjit S Dhillon
AAML
67
0
0
01 Apr 2025
Geometric Median (GM) Matching for Robust Data Pruning
Geometric Median (GM) Matching for Robust Data Pruning
Anish Acharya
Inderjit S Dhillon
Sujay Sanghavi
AAML
59
0
0
20 Jan 2025
Optimal Rates for Robust Stochastic Convex Optimization
Optimal Rates for Robust Stochastic Convex Optimization
Changyu Gao
Andrew Lowy
Xingyu Zhou
Stephen J. Wright
81
0
0
15 Dec 2024
Tolerant Algorithms for Learning with Arbitrary Covariate Shift
Tolerant Algorithms for Learning with Arbitrary Covariate Shift
Surbhi Goel
Abhishek Shetty
Konstantinos Stavropoulos
Arsen Vasilyan
OOD
34
2
0
04 Jun 2024
Robust Kernel Hypothesis Testing under Data Corruption
Robust Kernel Hypothesis Testing under Data Corruption
Antonin Schrab
Ilmun Kim
50
3
0
30 May 2024
Learning from Uncertain Data: From Possible Worlds to Possible Models
Learning from Uncertain Data: From Possible Worlds to Possible Models
Jiongli Zhu
Su Feng
Boris Glavic
Babak Salimi
42
0
0
28 May 2024
Robust Sparse Mean Estimation via Incremental Learning
Robust Sparse Mean Estimation via Incremental Learning
Jianhao Ma
Ruidi Chen
Yinghui He
S. Fattahi
Wei Hu
41
0
0
24 May 2023
On the Optimal Batch Size for Byzantine-Robust Distributed Learning
On the Optimal Batch Size for Byzantine-Robust Distributed Learning
Yi-Rui Yang
Chang-Wei Shi
Wu-Jun Li
FedML
AAML
32
0
0
23 May 2023
Nearly-Linear Time and Streaming Algorithms for Outlier-Robust PCA
Nearly-Linear Time and Streaming Algorithms for Outlier-Robust PCA
Ilias Diakonikolas
D. Kane
Ankit Pensia
Thanasis Pittas
OOD
36
10
0
04 May 2023
On Private and Robust Bandits
On Private and Robust Bandits
Yulian Wu
Xingyu Zhou
Youming Tao
Di Wang
24
5
0
06 Feb 2023
Robust Estimation under the Wasserstein Distance
Robust Estimation under the Wasserstein Distance
Sloan Nietert
Rachel Cummings
Ziv Goldfeld
36
4
0
02 Feb 2023
Near Optimal Private and Robust Linear Regression
Near Optimal Private and Robust Linear Regression
Xiyang Liu
Prateek Jain
Weihao Kong
Sewoong Oh
A. Suggala
41
9
0
30 Jan 2023
Robust empirical risk minimization via Newton's method
Robust empirical risk minimization via Newton's method
Eirini Ioannou
Muni Sreenivas Pydi
Po-Ling Loh
23
2
0
30 Jan 2023
Statistically Optimal Robust Mean and Covariance Estimation for
  Anisotropic Gaussians
Statistically Optimal Robust Mean and Covariance Estimation for Anisotropic Gaussians
A. Minasyan
Nikita Zhivotovskiy
36
9
0
21 Jan 2023
Private estimation algorithms for stochastic block models and mixture
  models
Private estimation algorithms for stochastic block models and mixture models
Hongjie Chen
Vincent Cohen-Addad
Tommaso dÓrsi
Alessandro Epasto
Jacob Imola
David Steurer
Stefan Tiegel
FedML
45
20
0
11 Jan 2023
Backdoor Attacks Against Dataset Distillation
Backdoor Attacks Against Dataset Distillation
Yugeng Liu
Zheng Li
Michael Backes
Yun Shen
Yang Zhang
DD
47
28
0
03 Jan 2023
Robustness Implies Privacy in Statistical Estimation
Robustness Implies Privacy in Statistical Estimation
Samuel B. Hopkins
Gautam Kamath
Mahbod Majid
Shyam Narayanan
23
50
0
09 Dec 2022
Outlier-Robust Sparse Mean Estimation for Heavy-Tailed Distributions
Outlier-Robust Sparse Mean Estimation for Heavy-Tailed Distributions
Ilias Diakonikolas
D. Kane
Jasper C. H. Lee
Ankit Pensia
30
12
0
29 Nov 2022
A Characterization of List Learnability
A Characterization of List Learnability
Moses Charikar
Chirag Pabbaraju
37
13
0
07 Nov 2022
Is Out-of-Distribution Detection Learnable?
Is Out-of-Distribution Detection Learnable?
Zhen Fang
Yixuan Li
Jie Lu
Jiahua Dong
Bo Han
Feng Liu
OODD
44
125
0
26 Oct 2022
Tackling Instance-Dependent Label Noise with Dynamic Distribution
  Calibration
Tackling Instance-Dependent Label Noise with Dynamic Distribution Calibration
Manyi Zhang
Yuxin Ren
Zihao Wang
C. Yuan
29
3
0
11 Oct 2022
On Optimal Learning Under Targeted Data Poisoning
On Optimal Learning Under Targeted Data Poisoning
Steve Hanneke
Amin Karbasi
Mohammad Mahmoody
Idan Mehalel
Shay Moran
AAML
FedML
36
7
0
06 Oct 2022
On the Impossible Safety of Large AI Models
On the Impossible Safety of Large AI Models
El-Mahdi El-Mhamdi
Sadegh Farhadkhani
R. Guerraoui
Nirupam Gupta
L. Hoang
Rafael Pinot
Sébastien Rouault
John Stephan
37
31
0
30 Sep 2022
Improved covariance estimation: optimal robustness and sub-Gaussian
  guarantees under heavy tails
Improved covariance estimation: optimal robustness and sub-Gaussian guarantees under heavy tails
R. I. Oliveira
Zoraida F. Rico
42
10
0
27 Sep 2022
Outlier Robust and Sparse Estimation of Linear Regression Coefficients
Outlier Robust and Sparse Estimation of Linear Regression Coefficients
Takeyuki Sasai
Hironori Fujisawa
35
4
0
24 Aug 2022
Holistic Robust Data-Driven Decisions
Holistic Robust Data-Driven Decisions
Amine Bennouna
Bart P. G. Van Parys
Ryan Lucas
OOD
41
22
0
19 Jul 2022
Robust and Sparse Estimation of Linear Regression Coefficients with
  Heavy-tailed Noises and Covariates
Robust and Sparse Estimation of Linear Regression Coefficients with Heavy-tailed Noises and Covariates
Takeyuki Sasai
26
4
0
15 Jun 2022
Trimmed Maximum Likelihood Estimation for Robust Learning in Generalized
  Linear Models
Trimmed Maximum Likelihood Estimation for Robust Learning in Generalized Linear Models
Pranjal Awasthi
Abhimanyu Das
Weihao Kong
Rajat Sen
25
6
0
09 Jun 2022
Optimal SQ Lower Bounds for Robustly Learning Discrete Product
  Distributions and Ising Models
Optimal SQ Lower Bounds for Robustly Learning Discrete Product Distributions and Ising Models
Ilias Diakonikolas
D. Kane
Yuxin Sun
33
1
0
09 Jun 2022
Certifying Data-Bias Robustness in Linear Regression
Certifying Data-Bias Robustness in Linear Regression
Anna P. Meyer
Aws Albarghouthi
Loris Dántoni
35
3
0
07 Jun 2022
Robust Sparse Mean Estimation via Sum of Squares
Robust Sparse Mean Estimation via Sum of Squares
Ilias Diakonikolas
D. Kane
Sushrut Karmalkar
Ankit Pensia
Thanasis Pittas
30
21
0
07 Jun 2022
Byzantine-Robust Online and Offline Distributed Reinforcement Learning
Byzantine-Robust Online and Offline Distributed Reinforcement Learning
Yiding Chen
Xuezhou Zhang
Kaipeng Zhang
Mengdi Wang
Xiaojin Zhu
OffRL
29
16
0
01 Jun 2022
Communication-efficient distributed eigenspace estimation with arbitrary
  node failures
Communication-efficient distributed eigenspace estimation with arbitrary node failures
Vasileios Charisopoulos
Anil Damle
16
1
0
31 May 2022
Covariance Estimation: Optimal Dimension-free Guarantees for Adversarial
  Corruption and Heavy Tails
Covariance Estimation: Optimal Dimension-free Guarantees for Adversarial Corruption and Heavy Tails
Pedro Abdalla
Nikita Zhivotovskiy
40
25
0
17 May 2022
Robust Testing in High-Dimensional Sparse Models
Robust Testing in High-Dimensional Sparse Models
Anand George
C. Canonne
48
3
0
16 May 2022
Streaming Algorithms for High-Dimensional Robust Statistics
Streaming Algorithms for High-Dimensional Robust Statistics
Ilias Diakonikolas
D. Kane
Ankit Pensia
Thanasis Pittas
24
21
0
26 Apr 2022
Robust estimation algorithms don't need to know the corruption level
Robust estimation algorithms don't need to know the corruption level
Ayush Jain
A. Orlitsky
V. Ravindrakumar
21
6
0
11 Feb 2022
Robust Voting Rules from Algorithmic Robust Statistics
Robust Voting Rules from Algorithmic Robust Statistics
Allen Liu
Ankur Moitra
26
4
0
13 Dec 2021
Private Robust Estimation by Stabilizing Convex Relaxations
Private Robust Estimation by Stabilizing Convex Relaxations
Pravesh Kothari
Pasin Manurangsi
A. Velingker
38
46
0
07 Dec 2021
Clustering Mixtures with Almost Optimal Separation in Polynomial Time
Clustering Mixtures with Almost Optimal Separation in Polynomial Time
Jingkai Li
Allen Liu
30
23
0
01 Dec 2021
Mean-based Best Arm Identification in Stochastic Bandits under Reward
  Contamination
Mean-based Best Arm Identification in Stochastic Bandits under Reward Contamination
Arpan Mukherjee
A. Tajer
Pin-Yu Chen
Payel Das
AAML
FedML
34
9
0
14 Nov 2021
Robust Estimation for Random Graphs
Robust Estimation for Random Graphs
Jayadev Acharya
Ayush Jain
Gautam Kamath
A. Suresh
Huanyu Zhang
35
8
0
09 Nov 2021
Certifying Robustness to Programmable Data Bias in Decision Trees
Certifying Robustness to Programmable Data Bias in Decision Trees
Anna P. Meyer
Aws Albarghouthi
Loris Dántoni
27
21
0
08 Oct 2021
Outlier-Robust Sparse Estimation via Non-Convex Optimization
Outlier-Robust Sparse Estimation via Non-Convex Optimization
Yu Cheng
Ilias Diakonikolas
Rong Ge
Shivam Gupta
D. Kane
Mahdi Soltanolkotabi
52
13
0
23 Sep 2021
SoK: Machine Learning Governance
SoK: Machine Learning Governance
Varun Chandrasekaran
Hengrui Jia
Anvith Thudi
Adelin Travers
Mohammad Yaghini
Nicolas Papernot
43
16
0
20 Sep 2021
ReLU Regression with Massart Noise
ReLU Regression with Massart Noise
Ilias Diakonikolas
Jongho Park
Christos Tzamos
56
11
0
10 Sep 2021
Robust Regression Revisited: Acceleration and Improved Estimation Rates
Robust Regression Revisited: Acceleration and Improved Estimation Rates
A. Jambulapati
Jingkai Li
T. Schramm
Kevin Tian
AAML
32
17
0
22 Jun 2021
Non-asymptotic analysis and inference for an outlyingness induced
  winsorized mean
Non-asymptotic analysis and inference for an outlyingness induced winsorized mean
Y. Zuo
27
1
0
05 May 2021
Learning GMMs with Nearly Optimal Robustness Guarantees
Learning GMMs with Nearly Optimal Robustness Guarantees
Allen Liu
Ankur Moitra
26
15
0
19 Apr 2021
12
Next