ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.05843
  4. Cited By
TASTE: Temporal and Static Tensor Factorization for Phenotyping
  Electronic Health Records

TASTE: Temporal and Static Tensor Factorization for Phenotyping Electronic Health Records

13 November 2019
Ardavan Afshar
Ioakeim Perros
Haesun Park
C. Defilippi
Xiaowei Yan
Walter F. Stewart
Joyce C. Ho
Jimeng Sun
ArXivPDFHTML

Papers citing "TASTE: Temporal and Static Tensor Factorization for Phenotyping Electronic Health Records"

4 / 4 papers shown
Title
SUSTain: Scalable Unsupervised Scoring for Tensors and its Application
  to Phenotyping
SUSTain: Scalable Unsupervised Scoring for Tensors and its Application to Phenotyping
Ioakeim Perros
Evangelos E. Papalexakis
H. Park
R. Vuduc
Xiaowei Yan
C. Defilippi
Walter F. Stewart
Jimeng Sun
22
599
0
14 Mar 2018
COPA: Constrained PARAFAC2 for Sparse & Large Datasets
COPA: Constrained PARAFAC2 for Sparse & Large Datasets
Ardavan Afshar
Ioakeim Perros
Evangelos E. Papalexakis
Elizabeth Searles
Joyce C. Ho
Jimeng Sun
34
41
0
12 Mar 2018
Nonnegative PARAFAC2: a flexible coupling approach
Nonnegative PARAFAC2: a flexible coupling approach
Jérémy E. Cohen
R. Bro
22
32
0
14 Feb 2018
SPARTan: Scalable PARAFAC2 for Large & Sparse Data
SPARTan: Scalable PARAFAC2 for Large & Sparse Data
Ioakeim Perros
Evangelos E. Papalexakis
Fei Wang
R. Vuduc
Elizabeth Searles
Michael Thompson
Jimeng Sun
27
72
0
13 Mar 2017
1