ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.05815
  4. Cited By
Kinematic State Abstraction and Provably Efficient Rich-Observation
  Reinforcement Learning

Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning

13 November 2019
Dipendra Kumar Misra
Mikael Henaff
A. Krishnamurthy
John Langford
ArXivPDFHTML

Papers citing "Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning"

6 / 56 papers shown
Title
FLAMBE: Structural Complexity and Representation Learning of Low Rank
  MDPs
FLAMBE: Structural Complexity and Representation Learning of Low Rank MDPs
Alekh Agarwal
Sham Kakade
A. Krishnamurthy
Wen Sun
OffRL
41
223
0
18 Jun 2020
$Q$-learning with Logarithmic Regret
QQQ-learning with Logarithmic Regret
Kunhe Yang
Lin F. Yang
S. Du
43
59
0
16 Jun 2020
Preference-based Reinforcement Learning with Finite-Time Guarantees
Preference-based Reinforcement Learning with Finite-Time Guarantees
Yichong Xu
Ruosong Wang
Lin F. Yang
Aarti Singh
A. Dubrawski
33
53
0
16 Jun 2020
Deep Reinforcement and InfoMax Learning
Deep Reinforcement and InfoMax Learning
Bogdan Mazoure
Rémi Tachet des Combes
T. Doan
Philip Bachman
R. Devon Hjelm
AI4CE
25
108
0
12 Jun 2020
Towards Understanding Cooperative Multi-Agent Q-Learning with Value
  Factorization
Towards Understanding Cooperative Multi-Agent Q-Learning with Value Factorization
Jianhao Wang
Zhizhou Ren
Beining Han
Jianing Ye
Chongjie Zhang
OffRL
31
32
0
31 May 2020
Reward-Free Exploration for Reinforcement Learning
Reward-Free Exploration for Reinforcement Learning
Chi Jin
A. Krishnamurthy
Max Simchowitz
Tiancheng Yu
OffRL
112
194
0
07 Feb 2020
Previous
12