ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.04610
  4. Cited By
XPipe: Efficient Pipeline Model Parallelism for Multi-GPU DNN Training
v1v2v3 (latest)

XPipe: Efficient Pipeline Model Parallelism for Multi-GPU DNN Training

24 October 2019
Lei Guan
W. Yin
Dongsheng Li
Xicheng Lu
ArXiv (abs)PDFHTML

Papers citing "XPipe: Efficient Pipeline Model Parallelism for Multi-GPU DNN Training"

19 / 19 papers shown
Title
Nesterov Method for Asynchronous Pipeline Parallel Optimization
Nesterov Method for Asynchronous Pipeline Parallel Optimization
Thalaiyasingam Ajanthan
Sameera Ramasinghe
Yan Zuo
Gil Avraham
Alexander Long
81
0
0
02 May 2025
TiMePReSt: Time and Memory Efficient Pipeline Parallel DNN Training with
  Removed Staleness
TiMePReSt: Time and Memory Efficient Pipeline Parallel DNN Training with Removed Staleness
Ankita Dutta
Nabendu Chaki
Rajat K. De
73
0
0
18 Oct 2024
Activations and Gradients Compression for Model-Parallel Training
Activations and Gradients Compression for Model-Parallel Training
Mikhail Rudakov
Aleksandr Beznosikov
Yaroslav Kholodov
Alexander Gasnikov
89
2
0
15 Jan 2024
Ravnest: Decentralized Asynchronous Training on Heterogeneous Devices
Ravnest: Decentralized Asynchronous Training on Heterogeneous Devices
A. Menon
Unnikrishnan Menon
Kailash Ahirwar
60
1
0
03 Jan 2024
PipeOptim: Ensuring Effective 1F1B Schedule with Optimizer-Dependent Weight Prediction
PipeOptim: Ensuring Effective 1F1B Schedule with Optimizer-Dependent Weight Prediction
Lei Guan
Dongsheng Li
Jiye Liang
Wenjian Wang
Wenjian Wang
Xicheng Lu
152
1
0
01 Dec 2023
AdaPlus: Integrating Nesterov Momentum and Precise Stepsize Adjustment
  on AdamW Basis
AdaPlus: Integrating Nesterov Momentum and Precise Stepsize Adjustment on AdamW Basis
Lei Guan
ODL
118
4
0
05 Sep 2023
XGrad: Boosting Gradient-Based Optimizers With Weight Prediction
XGrad: Boosting Gradient-Based Optimizers With Weight Prediction
Lei Guan
Dongsheng Li
Yanqi Shi
Jian Meng
ODL
96
2
0
26 May 2023
DISCO: Distributed Inference with Sparse Communications
DISCO: Distributed Inference with Sparse Communications
Minghai Qin
Chaowen Sun
Jaco A. Hofmann
D. Vučinić
FedML
54
1
0
22 Feb 2023
Weight Prediction Boosts the Convergence of AdamW
Weight Prediction Boosts the Convergence of AdamW
Lei Guan
106
19
0
01 Feb 2023
LOFT: Finding Lottery Tickets through Filter-wise Training
LOFT: Finding Lottery Tickets through Filter-wise Training
Qihan Wang
Chen Dun
Fangshuo Liao
C. Jermaine
Anastasios Kyrillidis
69
3
0
28 Oct 2022
PARTIME: Scalable and Parallel Processing Over Time with Deep Neural
  Networks
PARTIME: Scalable and Parallel Processing Over Time with Deep Neural Networks
Enrico Meloni
Lapo Faggi
Simone Marullo
Alessandro Betti
Matteo Tiezzi
Marco Gori
S. Melacci
GNNAI4TS
29
1
0
17 Oct 2022
DistrEdge: Speeding up Convolutional Neural Network Inference on
  Distributed Edge Devices
DistrEdge: Speeding up Convolutional Neural Network Inference on Distributed Edge Devices
Xueyu Hou
Yongjie Guan
Tao Han
Ning Zhang
107
42
0
03 Feb 2022
FTPipeHD: A Fault-Tolerant Pipeline-Parallel Distributed Training
  Framework for Heterogeneous Edge Devices
FTPipeHD: A Fault-Tolerant Pipeline-Parallel Distributed Training Framework for Heterogeneous Edge Devices
Yuhao Chen
Qianqian Yang
Shibo He
Zhiguo Shi
Jiming Chen
55
3
0
06 Oct 2021
ResIST: Layer-Wise Decomposition of ResNets for Distributed Training
ResIST: Layer-Wise Decomposition of ResNets for Distributed Training
Chen Dun
Cameron R. Wolfe
C. Jermaine
Anastasios Kyrillidis
87
21
0
02 Jul 2021
Automatic Graph Partitioning for Very Large-scale Deep Learning
Automatic Graph Partitioning for Very Large-scale Deep Learning
Masahiro Tanaka
Kenjiro Taura
T. Hanawa
Kentaro Torisawa
GNNAI4CE
54
21
0
30 Mar 2021
Parallel Training of Deep Networks with Local Updates
Parallel Training of Deep Networks with Local Updates
Michael Laskin
Luke Metz
Seth Nabarrao
Mark Saroufim
Badreddine Noune
Carlo Luschi
Jascha Narain Sohl-Dickstein
Pieter Abbeel
FedML
120
27
0
07 Dec 2020
DAPPLE: A Pipelined Data Parallel Approach for Training Large Models
DAPPLE: A Pipelined Data Parallel Approach for Training Large Models
Shiqing Fan
Yi Rong
Chen Meng
Zongyan Cao
Siyu Wang
...
Jun Yang
Lixue Xia
Lansong Diao
Xiaoyong Liu
Wei Lin
96
241
0
02 Jul 2020
torchgpipe: On-the-fly Pipeline Parallelism for Training Giant Models
torchgpipe: On-the-fly Pipeline Parallelism for Training Giant Models
Chiheon Kim
Heungsub Lee
Myungryong Jeong
Woonhyuk Baek
Boogeon Yoon
Ildoo Kim
Sungbin Lim
Sungwoong Kim
MoEAI4CE
51
54
0
21 Apr 2020
Taming Momentum in a Distributed Asynchronous Environment
Taming Momentum in a Distributed Asynchronous Environment
Ido Hakimi
Saar Barkai
Moshe Gabel
Assaf Schuster
93
23
0
26 Jul 2019
1